Responsive image
博碩士論文 etd-0030118-111600 詳細資訊
Title page for etd-0030118-111600
論文名稱
Title
把小型細胞嵌入大型細胞網路的功率計算數學模型
A Mathematical Model for Power Consumption in Small-Cell Embedded Macro Cell Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-19
繳交日期
Date of Submission
2018-01-30
關鍵字
Keywords
移動速度、數學模型、大型細胞、功率消耗、相互重疊的小型細胞
Overlapping Small Cells, Power Consumption, Mobility, Mathematical Model, Macro Cell
統計
Statistics
本論文已被瀏覽 5809 次,被下載 11
The thesis/dissertation has been browsed 5809 times, has been downloaded 11 times.
中文摘要
本論文在蜂巢式網路(Cellular Network)中提出一個雙小細胞嵌入大型細胞網
路(Double Cell Embedded Macro Cell Networks, DCEMC)的架構,此架構考慮在一
個大型細胞(Macro Cell)內有多個相互重疊的小型細胞(Small Cell),使用者(User
Equipment, UE)在此架構中的移動可能會造成訊號從大型細胞的基地台切換至相
互重疊的小型細胞的基地台,也有可能從相互重疊的小型細胞的基地台切換至大
型細胞的基地台,因為 UE 的移動會改變傳輸距離,因而導致大型與小型細胞基
地台傳輸功率總和的改變。本論文使用機率建立狀態轉換數學模型,在數學模型
中我們把 UE 的位置與連線的基地台區分為三個不同的狀態,並根據 UE 的移動
速度與小型基地台的通道使用率得到狀態轉換率,從狀態轉換率可以得到三個狀
態的機率,我們將每個狀態的機率乘上傳輸半徑的平方可以得到大型細胞基地台
與小型細胞基地台的傳輸功率消耗總和,從功率消耗總合中,在已知訊號衰減程
度的條件下,我們可以求得最低功率消耗與基地台涵蓋範圍的關係。
Abstract
In this thesis, we propose a double cell embedded macro cell (DCEMC) networks
architecture. We consider the coverage of small cells may overlap in a macro cell. The
movement of user equipment (UE) may cause the signal switch from macro cell to a
small cell. It is also possible to switch form one of the small cells to the macro cell.
Because the UE’s movement changes the transmission distance and thus leads to
change the total transmission power of the macro cell and the small cells within the
macro cell. In this thesis, we establish a mathematical model with state transitions by
using probability. We divide different states based on the location of UE and its
connection. The state transition rate is obtained according to the velocity of the UE and
the channel usage of the small cell. We can calculate the probability of each state from
the mathematical model. We multiply each state probability by the square of the
transmission radius to obtain the total transmission power of the macro cell and the
small cells within the macro cell. Given the path loss factor, we can derive the
relationship of the cell’s coverage and the lowest power consumption.
目次 Table of Contents
論文審定書…………………………………………………………………………….i
致謝……………………………………………………………………………………ii
摘要…………………………………………………………………………………...iii
Abstract……………………………………………………………………………….iv
目錄……………………………………………………………………………………v
圖表目錄 …………………………………………………………………………….vii
第一章 緒論................................................................................................................ 1
1.1 研究動機................................................................................................................. 1
1.2 研究方法................................................................................................................. 1
1.3 章節介紹................................................................................................................. 2
第二章 蜂巢式網路的功率消耗................................................................................ 3
2.1 蜂巢式網路............................................................................................................. 3
2.2 SEM 架構 ............................................................................................................. 4
2.3 UE 的移動率 ........................................................................................................ 5
2.4 蜂巢式網路的傳輸功率消耗................................................................................. 7
2.5 相關研究................................................................................................................. 7
2.6 本論文所提出的 SEM ........................................................................................... 9
第三章 小細胞嵌入大細胞...................................................................................... 10
3.1 SEM 系統架構 ................................................................................................... 10
3.2 狀態轉換的數學模型........................................................................................... 13
3.2.1 SCEMC 的數學模型 ....................................................................................... 13
3.2.2 DCEMC 的數學模型 ...................................................................................... 22
3.2.3 TDTP 與等效拓樸的關係............................................................................... 36
第四章 數學分析........................................................................................................ 40
4.1 參數表格............................................................................................................... 40
4.2 在 SCEMC 的 TDTP 分析 ................................................................................. 40
4.2.1 改變等效拓樸半徑............................................................................................ 40
4.2.2 改變 UE 平均移動速度 .................................................................................... 42
4.3 在 DCEMC 的 TDTP 分析 ................................................................................ 43
4.3.1 改變等效拓樸直徑............................................................................................. 44
4.3.2 改變 UE 平均移動速度 ..................................................................................... 45
第五章 結論與未來工作........................................................................................ 47
5.1 結論..................................................................................................................... 47
5.2 未來工作............................................................................................................. 48
References .................................................................................................................... 49
Acronyms ..................................................................................................................... 53
Index.............................................................................................................................54
參考文獻 References
[1] F. S. Farias, P. Monti, A. Västberg, M. Nilson, J. C. W. A. Costa, and L. Wosinska,
“Green Backhauling for Heterogeneous Mobile Access Networks: What Are the
Challenges,”9th International Conference on Information Communications and
Signal Processing, Tainan, Taiwan, pp. 1-5, Dec. 10-13, 2013.
[2] H. Xie and S. Kuek, “Priority Handoff Analysis,” Vehicular Technology
Conference, 43rd IEEE, Secaucus, NJ, USA, pp. 855-858, May 18-20, 1993.
[3] H. Xie and D. J. Goodman, “Mobility Models and Biased Sampling Problem,”
2nd International Conference on Universal Personal Communications Personal
Communications: Gateway to the 21st Century. Conference Record, Ottawa,
Ontario, Canada, pp. 803-807, Oct. 12-15, 1993.
[4] C. E. Shannon, “A Mathematical Theory of Communication,” The Bell System
Technical Journal, Vol. 27, Issue 4, pp. 623-656, Oct. 1948.
[5] H.T. Friis, “A Note on a Simple Transmission Formula,” Proceedings of the
IRE, Vol. 34, Issue 5, pp. 254-256, May 1946.
[6] T. L. Sheu, B. J. Lin, and Z. T. Chou, "Analytical Models for Call Blocking and
Dropping in Sectorized Cellular Networks with Fractional Frequency
Reuse," Wireless Communications and Mobile Computing, DOI:
10.1002/wcm.2484, Apr. 2014.
[7] 林宜洵, “在有微小細胞嵌入的大型細胞扇形網路上建立數學分析模型”,
國立中山大學電機系碩士論文,2016 年 8 月 9 日
[8] V. J. Kotagi, R. Thakur, S. Mishr, and C. S. R. Murthy, “Breathe to Save Energy:
Assigning Downlink Transmit Power and Resource Blocks to LTE Enabled IoT
Networks,” IEEE Commun. Lett. , Vol. 20, Issue 8, pp. 1607-1610, May 2016.
[9] A. Virdis, G. Stea, D. Sabella, and M. Caretti, “A Distributed Power-Saving
Framework for LTE HetNets Exploiting Almost Blank Subframes,” IEEE
Transactions on Green Communications and Networking, Vol. 1, Issue 3, pp. 235
252, Jun. 2017.
[10] T. Maksymyuk, L. Han. X. Ge, H. H. Chen, and M. Jo, “ Quasi
Quadrature Modulation Method for Power-Efficient Video Transmission
Over LTE Networks,” IEEE Transactions on Vehicular Technology, Vol. 63,
Issue 5, pp. 2083-2092, Apr. 2014.
[11] K. Kanwal and G. A. Safdar, “Reduced Early Handover for Energy Saving in
LTE Networks,” IEEE Communications Letters, pp. 153-156, Dec. 2015.
[12] Y. L. Chung, “Energy-Saving Transmission for Green Macrocell–Small Cell
Systems: A System-Level Perspective,” IEEE Systems Journal, Vol. 22, Issue 2,
pp.706-716, Oct. 2015.
[13] K. Y. Lin, J Y. Chen, F. C. Ren, and C. J. Chang, “TAPS: Traffic-Aware Power
Saving Scheme for Clustered Small Cell Base Stations in LTE-A,” 2015 IEEE
81st Vehicular Technology Conference, Glasgow, UK, pp. 1-5, May 11-14, 2015.
[14] Y. Zhao, H. Xia, and Z. Zeng, “Grouping Based Power Control for Improving
Energy Efficiency in Dense Small Cell Networks,” Personal, Indoor, and Mobile
Radio Communications on IEEE 26th Annual International Symposium, Hong
Kong, China, Aug. 30-Sep. 2, 2015.
[15] M. Yousefvand, T. Han, N. Ansari, and A. Khreishah, “Distributed Energy
Spectrum Trading in Green Cognitive Radio Cellular Networks,” IEEE Trans. on
Green Communications and Networking, Vol. 1, Issue 3, pp. 253-263, Apr. 2017.
[16] X. Zhang, J. Zhang, and W. Wang, “Macro-Assisted Data-Only Carrier for 5G
Green Cellular Systems,” IEEE Communications Magazine, Vol. 53, Issue 5, pp.
223-231, May 2015.
[17] M. Ismail, K. Qaraqe, and E. Serpedin, “Cooperation Incentives and Downlink
Radio Resource Allocation for Green Communications in a Heterogeneous
Wireless Environment,” IEEE Transactions on Vehicular Technology, Vol. 65,
Issue 3, pp. 1627-1638, Mar. 2015.
[18] A. Prasad, A. Maeder, and C. Ng, “Energy Efficient Small Cell Activation
Mechanism for Heterogeneous Networks,” IEEE Globecom Workshops, Atlanta,
GA, USA, Jun. 9-13, 2014.
[19] H. C. Jang and P. Y. Huang, “Adaptive Energy Saving Strategy for LTE
Advanced Networks,” Seventh International Conference on Ubiquitous and
Future Networks, Sapporo, Japan, pp. 306-310, Jul. 7-10, 2015.
[20] G. He, S. Zhang, Y. Chen, and S. Xu, “Architecture Design and Performance
Evaluation for Future Green Small Cell Wireless Networks,” IEEE International
Conference on Communications Workshops, Budapest, Hungary, Jun. 9-13, 2013.
[21] Y. Jin, L. Qiu, and Xiaowen Liang, “Small Cells On/Off Control and Load
Balancing for Green Dense Heterogeneous Networks,” IEEE Wireless
Communications and Networking Conf., New Orleans, LA, USA, Mar. 9-12, 2015.
[22] C. Yang, J. Yue, M. Sheng, and J. Li, “Trade-off Between Energy-Efficiency and
Spectral-Efficiency by Cooperative Rate Splitting,” Journal of Communications
and Networks, Vol. 16, Issue 2, pp. 121-129, May 2014.
[23] H. Holtkamp, G. Auer, S. Bazzi, and H. Haas, “Minimizing Base Station Power
Consumption,” IEEE Journal on Selected Areas in Communications, Vol. 32,
Issue 2, pp. 297-306, May 2014.
[24] C. H. Liu and L. C. Wang, “Optimal Cell Load and Throughput in Green Small
Cell Networks with Generalized Cell Association,” IEEE Journal on Selected
Areas in Communications, Vol. 34, Issue 5, pp. 1058-1072, Jan. 2016.
[25] P. Masek, M. Slabicki. J. Hosek, and K. Grochla, “ Transmission Power
Optimization in Live 3GPP LTE-A Indoor Deployment,” 8th International
Congress on Ultra-Modern Telecommunications and Control Systems and
Workshops, Lisbon, Portugal, Oct. 18-20, 2016.
[26] Y. L. Chung, “An Efficient Coverage Algorithm for Use in Macrocell-Small Cell
Systems,” IEEE International Systems Engineering Symposium, Vienna, Austria,
Oct. 11-13, 2017.
[27] M. M. Mowla, I. Ahmad, D. Habibi, and Q. V. Phung, “A Green Communication
Model for 5G Systems,” IEEE Transactions on Green Communications and
Networking, Vol. 1, Issue 3, pp. 264-280, May 2017.
[28] Y. L. Chung, “An Energy-Saving Small-Cell Zooming Scheme for Two-Tier
Hybrid Cellular Networks,” IEEE International Conference on
Information Networking, Siem Reap, Cambodia, pp. 148-152, Jan. 12-14, 2015.
[29] S. Cai, L. Duan, J. Wang, and R. Zhang, “Power-Saving Heterogeneous
Networks Through Optimal Small-Cell Scheduling,” IEEE Global Conference
on Signal and Information Processing, Atlanta, GA, Unite States, pp. 188-192,
Dec. 3-5, 2014.
[30] A. Arbi and T. O' Farrell, “Energy Efficiency in 5G Access Networks: Small Cell
Densification and High Order Sectorisation,” IEEE International Conference on
Communication Workshop, London, UK, pp. 2806-2811, Jun. 8-12, 2015.
[31] X. Ge, T. Han, Y. Zhang, G. Mao, C. X. Wang, J. Zhang, B. Yang, and S. Pan,
“Spectrum and Energy Efficiency Evaluation of Two-Tier Femtocell Networks
with Partially Open Channels,” IEEE Transactions on Vehicular Technology, Vol.
63, Issue 3, pp. 1306-1319, Nov. 2013
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code