Responsive image
博碩士論文 etd-0110113-155844 詳細資訊
Title page for etd-0110113-155844
論文名稱
Title
Prox1藉由降低Twist1表現進而抑制肝癌細胞生長及轉移
Prox1 suppresses growth and metastasis of hepatocellular carcinoma by downregulating Twist1
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-26
繳交日期
Date of Submission
2013-01-10
關鍵字
Keywords
侵襲力、老化、肝癌
AKT2, p53, Prox1, Twist1
統計
Statistics
本論文已被瀏覽 5687 次,被下載 75
The thesis/dissertation has been browsed 5687 times, has been downloaded 75 times.
中文摘要
轉錄因子Prox1 是一個與果蠅prospero 基因同源的homeobox 基因,此蛋白
高度表現在成人肝細胞且與肝臟發育息息相關。相反的,在肝癌中Prox1 的低表
現與細胞分化差、預後差及病人低存活率密切相關,意味著Prox1 在肝癌中扮演
腫瘤抑制者的角色。然而Prox1 在肝癌中的腫瘤抑制功能之分子機制則尚未清
楚。在本研究中,我們發現在肝癌細胞株中Prox1 的表現與E-cadherin 為正相關,
但是與Twist1 及Vimentin 呈負相關。外源性Prox1 會抑制Twist1 表現而降低內
生性Prox1 則造成Twist1 表現增加。此外,我們以染色質免疫沉澱進一步證實了
Prox1 藉由結合到Twist1 啟動子-117/-111 區域而抑制Twist1 表現。在Prox1 抑制
Twist1 的狀況下會增加p53 表現並降低AKT2 表現,p53 在Prox1 抑制細胞生長
中扮演重要角色而AKT2 則與Prox1 抑制細胞侵襲力有關,而動物實驗也證實了
Prox1 會抑制腫瘤生長以及肺轉移。綜言之,Prox1 在肝癌細胞中藉由抑制Twist1
去引發p53依賴性細胞衰老與降低AKT2媒介的細胞侵襲力來達到腫瘤抑制的作
用。
Abstract
Prospero-related homeobox 1 (Prox1) was cloned as homeobox gene which
homologous to the Drosophila prospero gene. As a transcription factor, Prox1 is
important for liver development and is highly expressed in adult hepatocytes. In
contrast, down-regulation of Prox1 in hepatocellular carcinoma (HCC) is associated
with poor differentiation, prognosis, and reduced overall survival which implying a
potential tumor suppressive role of Prox1 in HCC. However, the molecular
mechanisms of Prox1’s tumor suppressive function are still obscure. In this study, we
find that Prox1 expression is positively associated with E-cadherin and negatively
linked with Twist1 and vimentin in various HCC cell lines. Ectopic expression of
Prox1 reduces Twist1 while knockdown of Prox1 increased Twist1 expression. We
further identify a putative Prox1 binding site located at the -117/-111 bp of the Twist1
promoter which is critical for gene repression. Chromatin immunoprecipitation assays
also demonstrate the direct binding of Prox1 to human Twist1 promoter. In addition,
inhibition of Twist1 by Prox1 causes p53 up-regulation and AKT2 down-regulation.
Moreover, functional assays show that wild-type p53 induction is important for the
growth-inhibitory effect of Prox1 and AKT2 is involved in the inhibition of migration
and invasion by Prox1. In consistence with the results of cell-based study, animal
experiments demonstrate that Prox1 significantly attenuates tumor growth and lung
metastasis in vivo. Collectively, we conclude that Prox1 functions as a tumor
suppressor in HCC cells via inhibiting Twist1 to trigger p53-dependent
senescence-like phenotype and to reduce AKT2-mediated invasion.
目次 Table of Contents
Chapter 1. Introduction. 1
Section 1. Hepatocellular carcinoma (HCC) 2
Section 2. Prox1 4
Section 3. The emerging role of Prox1 in HCC 10
Section 4. Objectives of study 11
Chapter 2. Prox1 inhibits Twist1 expression via transcriptional repression 13
Chapter 3. Prox1 inhibits Twist1 to trigger p53-dependent senescence-like
phenotype in hepatocellular carcinoma cells 33
Chapter 4. Prox1 inhibits Twist1 to attenuate AKT2-mediated metastasis
in hepatocellular carcinoma cells 57
Chapter 5. Conclusion and prospect 73
Chapter 6. References 77
Supplementary information 88
參考文獻 References
1. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular
carcinogenesis. Gastroenterology. 2007 Jun;132(7):2557-76.
2. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011 Sep 22;365(12):1118
-27.
3. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to
environment. Nat Rev Cancer. 2006 Sep;6(9):674-87.
4. Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of
postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg. 2000
Jul;232(1):10-24.
5. Oliver G, Sosa-Pineda B, Geisendorf S, Spana EP, Doe CQ, Gruss P. Prox 1, a
prospero-related homeobox gene expressed during mouse development. Mech Dev.
1993 Nov;44(1):3-16.
6. Zinovieva RD, Duncan MK, Johnson TR, Torres R, Polymeropoulos MH, Tomarev
SI. Structure and chromosomal localization of the human homeobox gene Prox 1.
Genomics. 1996 Aug 1;35(3):517-22.
7. Banerjee-Basu S, Landsman D, Baxevanis AD. Threading analysis of prospero-type
homeodomains. In Silico Biol. 1999;1(3):163-73.
8. Ryter JM, Doe CQ, Matthews BW. Structure of the DNA binding region of prospero
reveals a novel homeo-prospero domain. Structure. 2002 Nov;10(11):1541-9.
9. Yousef MS, Matthews BW. Structural basis of Prospero-DNA interaction:
implications for transcription regulation in developing cells. Structure. 2005
Apr;13(4):601-7.
10. Chen X, Patel TP, Simirskii VI, Duncan MK. PCNA interacts with Prox1 and
represses its transcriptional activity. Mol Vis. 2008;14:2076-86.
11. Song KH, Li T, Chiang JY. A Prospero-related homeodomain protein is a novel
co-regulator of hepatocyte nuclear factor 4alpha that regulates the cholesterol 7alpha-hydroxylase gene. J Biol Chem. 2006 Apr 14;281(15):10081-8.
12. Shan SF, Wang LF, Zhai JW, Qin Y, Ouyang HF, Kong YY, et al. Modulation of
transcriptional corepressor activity of prospero-related homeobox protein (Prox1) by
SUMO modification. FEBS Lett. 2008 Nov 12;582(27):3723-8.
13. Elsir T, Smits A, Lindstrom MS, Nister M. Transcription factor PROX1: its role in
development and cancer. Cancer Metastasis Rev. 2012 Dec;31(3-4):793-805.
14. Wigle JT, Chowdhury K, Gruss P, Oliver G. Prox1 function is crucial for mouse
lens-fibre elongation. Nat Genet. 1999 Mar;21(3):318-22.
15. Wigle JT, Oliver G. Prox1 function is required for the development of the murine
lymphatic system. Cell. 1999 Sep 17;98(6):769-78.
16. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, et al. An
essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype.
EMBO J. 2002 Apr 2;21(7):1505-13.
17. Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, et al. Prox1 is a
master control gene in the program specifying lymphatic endothelial cell fate. Dev
Dyn. 2002 Nov;225(3):351-7.
18. Sosa-Pineda B, Wigle JT, Oliver G. Hepatocyte migration during liver development
requires Prox1. Nat Genet. 2000 Jul;25(3):254-5.
19. Burke Z, Oliver G. Prox1 is an early specific marker for the developing liver and
pancreas in the mammalian foregut endoderm. Mech Dev. 2002
Oct;118(1-2):147-55.
20. Wang J, Kilic G, Aydin M, Burke Z, Oliver G, Sosa-Pineda B. Prox1 activity
controls pancreas morphogenesis and participates in the production of "secondary
transition" pancreatic endocrine cells. Dev Biol. 2005 Oct 1;286(1):182-94.
21. Westmoreland JJ, Kilic G, Sartain C, Sirma S, Blain J, Rehg J, et al.
Pancreas-specific deletion of prox1 affects development and disrupts homeostasis of the exocrine pancreas. Gastroenterology. 2012 Apr;142(4):999-1009 e6.
22. Risebro CA, Searles RG, Melville AA, Ehler E, Jina N, Shah S, et al. Prox1
maintains muscle structure and growth in the developing heart. Development. 2009
Feb;136(3):495-505.
23. Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, et al.
Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF)
receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis.
Mol Biol Cell. 2006 Feb;17(2):576-84.
24. Pan MR, Chang TM, Chang HC, Su JL, Wang HW, Hung WC. Sumoylation of
Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes
in endothelial cells. J Cell Sci. 2009 Sep 15;122(Pt 18):3358-64.
25. Qin J, Gao DM, Jiang QF, Zhou Q, Kong YY, Wang Y, et al. Prospero-related
homeobox (Prox1) is a corepressor of human liver receptor homolog-1 and
suppresses the transcription of the cholesterol 7-alpha-hydroxylase gene. Mol
Endocrinol. 2004 Oct;18(10):2424-39.
26. Charest-Marcotte A, Dufour CR, Wilson BJ, Tremblay AM, Eichner LJ, Arlow DH,
et al. The homeobox protein Prox1 is a negative modulator of
ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes Dev. 2010 Mar
15;24(6):537-42.
27. Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B, et al. Prox1 physically and
functionally interacts with COUP-TFII to specify lymphatic endothelial cell fate.
Blood. 2009 Feb 19;113(8):1856-9.
28. Yamazaki T, Yoshimatsu Y, Morishita Y, Miyazono K, Watabe T. COUP-TFII
regulates the functions of Prox1 in lymphatic endothelial cells through direct
interaction. Genes Cells. 2009 Mar;14(3):425-34.
29. Yoshimatsu Y, Yamazaki T, Mihira H, Itoh T, Suehiro J, Yuki K, et al. Ets family members induce lymphangiogenesis through physical and functional interaction
with Prox1. J Cell Sci. 2011 Aug 15;124(Pt 16):2753-62.
30. Nagai H, Li Y, Hatano S, Toshihito O, Yuge M, Ito E, et al. Mutations and aberrant
DNA methylation of the PROX1 gene in hematologic malignancies. Genes
Chromosomes Cancer. 2003 Sep;38(1):13-21.
31. Laerm A, Helmbold P, Goldberg M, Dammann R, Holzhausen HJ, Ballhausen WG.
Prospero-related homeobox 1 (PROX1) is frequently inactivated by genomic
deletions and epigenetic silencing in carcinomas of the bilary system. J hepatol.
2007 Jan;46(1):89-97.
32. Versmold B, Felsberg J, Mikeska T, Ehrentraut D, Kohler J, Hampl JA, et al.
Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic
breast cancer. Int J Cancer. 2007 Aug 1;121(3):547-54.
33. Takahashi M, Yoshimoto T, Shimoda M, Kono T, Koizumi M, Yazumi S, et al. Loss
of function of the candidate tumor suppressor prox1 by RNA mutation in human
cancer cells. Neoplasia. 2006 Dec;8(12):1003-10.
34. Yoshimoto T, Takahashi M, Nagayama S, Watanabe G, Shimada Y, Sakasi Y, et al.
RNA mutations of prox1 detected in human esophageal cancer cells by the shifted
termination assay. Biochem Biophys Res Commun. 2007 Jul 27;359(2):258-62.
35. Papoutsi M, Dudas J, Becker J, Tripodi M, Opitz L, Ramadori G, et al. Gene
regulation by homeobox transcription factor Prox1 in murine hepatoblasts. Cell
Tissue Res. 2007 Nov;330(2):209-20.
36. Shimoda M, Takahashi M, Yoshimoto T, Kono T, Ikai I, Kubo H. A homeobox
protein, prox1, is involved in the differentiation, proliferation, and prognosis in
hepatocellular carcinoma. Clin Cancer Res. 2006 Oct 15;12(20 Pt 1):6005-11.
37. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in
development and disease. Cell. 2009 Nov 25;139(5):871-90.
38. Kang Y, Massague J. Epithelial-mesenchymal transitions: twist in development and
metastasis. Cell. 2004 Aug 6;118(3):277-9.
39. Simpson P. Maternal-Zygotic Gene Interactions during Formation of the
Dorsoventral Pattern in Drosophila Embryos. Genetics. 1983 Nov;105(3):615-32.
40. Thisse B, el Messal M, Perrin-Schmitt F. The twist gene: isolation of a Drosophila
zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids
Res. 1987 Apr 24;15(8):3439-53.
41. Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F. Sequence of the twist
gene and nuclear localization of its protein in endomesodermal cells of early
Drosophila embryos. EMBO J. 1988 Jul;7(7):2175-83.
42. Jan YN, Jan LY. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell.
1993 Dec 3;75(5):827-30.
43. Ellenberger T, Fass D, Arnaud M, Harrison SC. Crystal structure of transcription
factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev.
1994 Apr 15;8(8):970-80.
44. Wang SM, Coljee VW, Pignolo RJ, Rotenberg MO, Cristofalo VJ, Sierra F. Cloning
of the human twist gene: its expression is retained in adult mesodermally-derived
tissues. Gene. 1997 Mar 10;187(1):83-92.
45. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of
Twist1 and underlying molecular mechanisms. Cell Res. 2012 Jan;22(1):90-106.
46. Ansieau S, Bastid J, Doreau A, Morel AP, Bouchet BP, Thomas C, et al. Induction of
EMT by twist proteins as a collateral effect of tumor-promoting inactivation of
premature senescence. Cancer Cell. 2008 Jul 8;14(1):79-89.
47. Hayflick L. The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell
Res. 1965 Mar;37:614-36.
48. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010 Nov 15;24(22):2463-79.
49. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes
premature cell senescence associated with accumulation of p53 and p16INK4a. Cell.
1997 Mar 7;88(5):593-602.
50. Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, et al. A
novel type of cellular senescence that can be enhanced in mouse models and human
tumor xenografts to suppress prostate tumorigenesis. J Clin Invest. 2010
Mar;120(3):681-93.
51. Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y. Tumour suppression by
p53: the importance of apoptosis and cellular senescence. J Pathol. 2009
Sep;219(1):3-15.
52. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, et al. Tumour
biology: senescence in premalignant tumours. Nature. 2005 Aug 4;436(7051):642.
53. Collado M, Serrano M. Senescence in tumours: evidence from mice and humans.
Nat Rev Cancer. 2010 Jan;10(1):51-7.
54. Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. Pro-senescence therapy for
cancer treatment. Nat Rev Cancer. 2011 Jul;11(7):503-11.
55. Castanon I, Baylies MK. A Twist in fate: evolutionary comparison of Twist structure
and function. Gene. 2002 Apr 3;287(1-2):11-22.
56. Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, et al.
Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 1999 Sep
1;13(17):2207-17.
57. Gullaud M, Delanoue R, Silber J. A Drosophila model to study the functions of
TWIST orthologs in apoptosis and proliferation. Cell Death Differ. 2003
Jun;10(6):641-51.
58. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, et al. Twist and p53 reciprocally regulate target genes via direct interaction. Oncogene. 2008
Sep 18;27(42):5543-53.
59. Duncan MK, Cui W, Oh DJ, Tomarev SI. Prox1 is differentially localized during
lens development. Mech Dev. 2002 Mar;112(1-2):195-8.
60. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, et al.
Restoration of p53 function leads to tumour regression in vivo. Nature. 2007 Feb
8;445(7128):661-5.
61. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al.
Senescence and tumour clearance is triggered by p53 restoration in murine liver
carcinomas. Nature. 2007 Feb 8;445(7128):656-60.
62. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev
Cancer. 2002 Jun;2(6):442-54.
63. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, et al. Twist
overexpression correlates with hepatocellular carcinoma metastasis through
induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006 Sep
15;12(18):5369-76.
64. Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, et al. Comprehensive
analysis of the independent effect of twist and snail in promoting metastasis of
hepatocellular carcinoma. Hepatology. 2009 Nov;50(5):1464-74.
65. Matsuo N, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Tanaka S, et al. Twist
expression promotes migration and invasion in hepatocellular carcinoma. BMC
Cancer. 2009;9:240.
66. Sun T, Zhao N, Zhao XL, Gu Q, Zhang SW, Che N, et al. Expression and functional
significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry.
Hepatology. 2010 Feb;51(2):545-56.
67. Pan MR, Hou MF, Chang HC, Hung WC. Cyclooxygenase-2 up-regulates CCR7 via EP2/EP4 receptor signaling pathways to enhance lymphatic invasion of breast
cancer cells. J Biol Chem. 2008 Apr 25;283(17):11155-63.
68. Chang CK, Hung WC, Chang HC. The Kazal motifs of RECK protein inhibit
MMP-9 secretion and activity and reduce metastasis of lung cancer cells in vitro and
in vivo. J Cell Mol Med. 2008 Dec;12(6B):2781-9.
69. Pan MR, Chang HC, Wu YC, Huang CC, Hung WC. Tubocapsanolide A inhibits
transforming growth factor-beta-activating kinase 1 to suppress NF-kappaB-induced
CCR7. J Biol Chem. 2009 Jan 30;284(5):2746-54.
70. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally
up-regulates AKT2 in breast cancer cells leading to increased migration, invasion,
and resistance to paclitaxel. Cancer Res. 2007 Mar 1;67(5):1979-87.
71. Xu X, Sakon M, Nagano H, Hiraoka N, Yamamoto H, Hayashi N, et al. Akt2
expression correlates with prognosis of human hepatocellular carcinoma. Oncol Rep.
2004 Jan;11(1):25-32.
72. Mei C, Sun L, Liu Y, Yang Y, Cai X, Liu M, et al. Transcriptional and
post-transcriptional control of DNA methyltransferase 3B is regulated by
phosphatidylinositol 3 kinase/Akt pathway in human hepatocellular carcinoma cell
lines. J Cell Biochem. 2010 Sep 1;111(1):158-67.
73. Mironchik Y, Winnard PT, Jr., Vesuna F, Kato Y, Wildes F, Pathak AP, et al. Twist
overexpression induces in vivo angiogenesis and correlates with chromosomal
instability in breast cancer. Cancer Res. 2005 Dec 1;65(23):10801-9.
74. Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB, Muller WJ. Akt1 and
akt2 play distinct roles in the initiation and metastatic phases of mammary tumor
progression. Cancer Res. 2009 Jun 15;69(12):5057-64.
75. Dillon RL, Muller WJ. Distinct biological roles for the akt family in mammary
tumor progression. Cancer Res. 2010 Jun 1;70(11):4260-4.
76. Rychahou PG, Kang J, Gulhati P, Doan HQ, Chen LA, Xiao SY, et al. Akt2
overexpression plays a critical role in the establishment of colorectal cancer
metastasis. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20315-20.
77. Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or
consequence? Nat Rev Cancer. 2002 Oct;2(10):777-85.
78. Okabe H, Ikai I, Matsuo K, Satoh S, Momoi H, Kamikawa T, et al. Comprehensive
allelotype study of hepatocellular carcinoma: potential differences in pathways to
hepatocellular carcinoma between hepatitis B virus-positive and -negative tumors.
Hepatology. 2000 May;31(5):1073-9.
79. Kazenwadel J, Michael MZ, Harvey NL. Prox1 expression is negatively regulated
by miR-181 in endothelial cells. Blood. 2010 Sep 30;116(13):2395-401.
80. Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, et al.
TGFbeta-mediated upregulation of hepatic miR-181b promotes
hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010 Mar 25;29(12):1787-97.
81. Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al. Identification of
microRNA-181 by genome-wide screening as a critical player in EpCAM-positive
hepatic cancer stem cells. Hepatology. 2009 Aug;50(2):472-80.
82. Kogan-Sakin I, Tabach Y, Buganim Y, Molchadsky A, Solomon H, Madar S, et al.
Mutant p53(R175H) upregulates Twist1 expression and promotes
epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ.
2011 Feb;18(2):271-81.
83. Zhang Y, Yan W, Chen X. Mutant p53 disrupts MCF-10A cell polarity in
three-dimensional culture via epithelial-to-mesenchymal transitions. J Biol Chem.
2011 May 6;286(18):16218-28.
84. Dadras SS, Skrzypek A, Nguyen L, Shin JW, Schulz MM, Arbiser J, et al. Prox-1
promotes invasion of kaposiform hemangioendotheliomas. J Invest Dermatol. 2008 Dec;128(12):2798-806.
85. Petrova TV, Nykanen A, Norrmen C, Ivanov KI, Andersson LC, Haglund C, et al.
Transcription factor PROX1 induces colon cancer progression by promoting the
transition from benign to highly dysplastic phenotype. Cancer Cell. 2008
May;13(5):407-19.
86. Skog M, Bono P, Lundin M, Lundin J, Louhimo J, Linder N, et al. Expression and
prognostic value of transcription factor PROX1 in colorectal cancer. Br J Cancer.
2011 Oct 25;105(9):1346-51.
87. Elsir T, Qu M, Berntsson SG, Orrego A, Olofsson T, Lindstrom MS, et al. PROX1 is
a predictor of survival for gliomas WHO grade II. Br J Cancer. 2011 May
24;104(11):1747-54.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code