Responsive image
博碩士論文 etd-0115113-151817 詳細資訊
Title page for etd-0115113-151817
論文名稱
Title
滑移速度邊界條件於評估波浪在多孔底床引致之床面 速度與床面剪應力評估之應用
Application of Slip Velocity Boundary Condition to Estimate Waves induced Bed Velocity and Bed Shear Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-21
繳交日期
Date of Submission
2013-01-15
關鍵字
Keywords
滑移係數、底床滑移速度、波浪摩擦係數、底床剪應力、波浪邊界層、滑移長度模式、滑移速度邊界條件
Slip factor, Bed slip velocity, Wave friction factor, Bed shear stress, Wave boundary layer, Slip length model, Slip velocity boundary condition
統計
Statistics
本論文已被瀏覽 5681 次,被下載 878
The thesis/dissertation has been browsed 5681 times, has been downloaded 878 times.
中文摘要
本研究提出一種新的簡單方法,用於計算波浪邊界層中流體-固體交界面之床面滑移速度。根據已知實驗和數值模擬結果,當波浪通過剛性透水底床時,在流-固交界面上存在一個非零的滑移速度。由往昔的眾多研究,所預估之底床滑移速度均偏小。在波浪與剛性透水底床之邊界值問題中,滑移現象取決於底床的性質。滑移速度邊界條件(SVBC)通常是用於解釋流體在多孔介質的滑移現象。傳統的SVBC或滑移速度只考慮在單向流之流況,然SVBC在簡諧運動中的應用仍然是一個懸而未決的問題,在實際之案例中,必須尋求一個簡單的公式用以評估波浪邊界層之底床滑移速度。
本文第一部份,利用史托克斯第二類問題和滑移長度模式(SLM)導出一個新的滑移速度和滑移係數。海床的滲透性和粗糙度被選擇作為滑移特性長度。解析結果顯示滑移速度取決於波浪週期和壓力梯度;而波浪雷諾數、沉積物滲透性及底床粗糙度則會影響滑移係數。理論得到的滑移速度與實驗結果具有良好的一致性。
延伸滑移係數之理論來估算在層流/紊流粗糙床面中床面剪應力是本研究的第二部分。根據滑移係數公式,可以推導出波浪摩擦係數與滑移係數之簡單關係,在不同的流況中可估算出波浪通過多孔介質床面之摩擦係數。本研究之理論公式顯示波浪摩擦係數與相對床面粗糙度A/ks成反比,當已知波浪條件及沉積物參數時,該公式可以很方便地定出波浪摩擦係數,而無需利用特定的實驗所推導出的回歸公式。本文另外在實驗室直接量測在多孔床面由波浪所引起之剪應力,並檢核理論之適足性。
  在層流區,與已知之試驗結果對照後,顯示本文理論計算結果具有良好的一致性。在紊流-粗糙區中,本研究考慮渦流粘滯係數的影響,並採用零方程模型用於估計平均渦流粘滯係數。所得波浪摩擦係數理論之預估值是相當接近於實驗量測結果,其結果優於其他現有的回歸公式。在小粗糙度區域中,本研究所提出之公式仍可用來計算該區間之波摩擦係數;因此,滑移係數理論可擴展至紊流-粗糙區之波浪摩擦係數之預估上。實驗結果進一步顯示,在多孔介質中的波浪摩擦係數會受沉積物滲透性的影響。根據與往昔結果驗證後顯示,本研究所提供之方法,可以應用在實際情況下估算床面滑移速度和床面剪應力及提供工程規劃及數值模擬參數設定或計算之參考。
Abstract
In the present study, a new and simple method for determining the slip velocity (also called the bed velocity) on the solid-fluid interface in the wave boundary layer is proposed. Based on experimental and numerical results, when waves travel over a rigid permeable seabed, a nonzero slip velocity exists at the solid-fluid interface. The defect of a small slip velocity has been found to occur in previous studies and is usually encountered in fluid-porous layer problems. In the wave-rigid permeable seabed problem, the slip effect depends on the properties of the seabed. The slip velocity boundary condition (SVBC) is one specification of the slip conditions and is usually applied to explain the slip phenomenon in a fluid-porous layer problem. However, the traditional SVBC or the slip velocity is only considered in a single flow, and the application of SVBC in harmonic motion is still an open problem that necessitates a simple formula for determining the slip velocity in realistic cases.
The Stokes’ second problem and the slip length model (SLM) are applied to derive a new slip velocity and a slip factor in this paper. Both the permeability and the roughness of the seabed are chosen as the characteristic length of slip motion. The analytical solution shows that the new slip velocity depends on the wave period and the pressure gradient, and the slip factor is related to the wave Reynolds number, the permeability, and the roughness of the seabed. The resultant slip velocity shows good agreement with the experimental results.
Using the slip factor to determine the bed shear stress in the laminar/turbulent-rough regimes is the second part in this study. A simple relationship is developed to theoretically estimate the wave friction factor in various flow regimes in the porous media based on the slip factor formula. The theoretical formula shows that the wave friction factor varies inversely with the relative bed roughness,A/ks , over a rough bed and that it can be conveniently determined if wave conditions and sediment parameters are known without using a specific regression formula deduced from experiments. A laboratory experiment that directly measures the wave-driven bed shear stress dominant in the turbulent regime with a permeable bed is used to examine the newly-derived relationship.
In the laminar regime, the comparison demonstrates that the theoretical results determined by the proposed formula are in good agreement with existing measurements. In the turbulent-rough regime, the influence of eddy viscosity is considered in the present model and the zero-equation model is used to estimate an average eddy viscosity. The theoretical wave friction factor is reasonably close to the experimental measurement, and considerably better than that obtained by other existing regressions. It is also found that the wave friction factor in the small zone can be described by the present model, with comparisons showing that the slip factor theory can be extended to estimate the wave friction factor in the turbulent-rough regime. Additionally, the proposed relationship is demonstrated to be effectively used in an alternate rough bed. Experimental results further indicate that the wave friction factor in porous medium is affected by the permeability of the sediment. Based on many comparisons with previous results, it is concluded that the method provided by the present study can be applied for determining the slip velocity and bed shear stress and setting up the parameter in the real case and numerical model.
目次 Table of Contents
誌謝....................................................................................................................................i
中英文摘要.......................................................................................................................ii
目錄..................................................................................................................................vi
圖目錄.......................................................................................................................................................ix
表目錄.....................................................................................................................................................xiii
符號表............................................................................................................................xiv
第一章 緒 論
1.1前言..............................................................................................................................1
1.2前人研究及文獻回顧..................................................................................................2
1.2.1底床滑移速度量測與評估.............................................................................2
1.2.2底床剪應力量測與評估.................................................................................3
1.3研究動機及目的..........................................................................................................5
1.4研究方法......................................................................................................................6
1.5本文架構......................................................................................................................7
第二章 滑移模型之理論及應用
2.1流固交界面之滑移現象..............................................................................................9
2.2滑移速度邊界條件-滑移長度模式..........................................................................12
2.3滑移邊界條件於水動力問題之應用........................................................................15
2.3.1 Beavers及Joseph (1967)滑移速度邊界條件..............................................15
2.3.2 Saffman滑移速度邊界條件於波浪問題之應用........................................16
第三章 波浪與多孔介質交界面之滑移速度
3.1邊界條件之修正及設定............................................................................................19
3.1.1上部邊界條件...............................................................................................19
3.1.2沉積物粒徑與等值粗糙度...........................................................................19
3.1.3波浪與多孔介質交界面之邊界條件...........................................................21
3.2基本假設與理論分析................................................................................................23
3.3滑移速度及滑移係數................................................................................................26
3.3.1流體加速度效應...........................................................................................26
3.3.2壓力梯度效應...............................................................................................27
3.3.3經驗常數 之決定......................................................................................28
3.4利用Saffman(1971)之滑移速度邊界條件所得出之理論解..................................30
3.5理論之驗證................................................................................................................30
3.5.1與李(1994)及Lee et al.(1996)試驗之比較..................................................30
3.5.2與Liu et al.(1996)試驗之比較.....................................................................36
3.5.3與(3.30)式之比較.........................................................................................39
3.6誤差原因及分析........................................................................................................40
3.7敏感度分析................................................................................................................42
3.7.1波浪雷諾數對滑移係數及滑移速度之影響...............................................42
3.7.2底床粗糙度及滲透係數對滑移係數之影響...............................................45
第四章 底床剪應力之評估與水工模型試驗
4.1滑移係數與底床摩擦係數之關係............................................................................54
4.2紊流區渦漩黏致係數之評估....................................................................................55
4.3底床剪應力之試驗及剪力計之製作........................................................................57
4.3.1底床剪應力之試驗設施...............................................................................57
4.3.2底床剪應力估算方式...................................................................................59
4.3.3量測原理.......................................................................................................65
4.3.4剪力計之構造及細部設計...........................................................................66
4.3.5率定及水中動力分析...................................................................................71
4.3.6精度分析.......................................................................................................73
4.4水工模型試驗設備及配置........................................................................................75
4.4.1造波斷面水槽...............................................................................................75
4.4.2多孔介質底床之鋪設及剪力計安裝...........................................................76
4.4.3試驗條件與試驗流程...................................................................................79
4.5分析方法....................................................................................................................81
4.6試驗結果....................................................................................................................82
4.6.1試驗結果之可靠度分析...............................................................................82
4.6.2水平總力.......................................................................................................85
4.7理論與試驗結果之比較............................................................................................88
4.7.1層流區-與You and Yin(2007)試驗之驗證..................................................91
4.7.2紊流-粗糙區(Turbulent-rough regime)-與本次試驗結果之比較...............91
4.7.3渦漩黏滯係數之驗證-與Mirfenderesk and Young(2003)試驗與其他
理論公式之驗證..........................................................................................93
第五章 特性分析與討論
5.1本模式之等值粗糙度評估..............................................................................95
5.2剪力與自由水面之相位偏移..........................................................................96
5.3理論公式在層流區及紊流-粗糙區之應用....................................................98
5.4最佳渦漩黏滯係數之評估............................................................................103
5.5滲透係數及多孔界面對剪應力之影響........................................................105
5.6由剪力計長度所引起之誤差........................................................................107
5.7底床穩定性之應用........................................................................................108
5.8能量損耗及波浪衰減係數............................................................................110
第六章 結論與建議
6.1結論..........................................................................................................................115
6.2建議..........................................................................................................................117
參考文獻.......................................................................................................................119
附錄A............................................................................................................................129
附錄B............................................................................................................................131
附錄C............................................................................................................................133
簡歷...............................................................................................................................135
參考文獻 References
1. 張國強,1980,波浪作用下底面力之研究,國立成功大學水利及海洋工程所碩士論
文。
2. 吳望一,1989,流體力學,北京大學出版社。
3. 張興漢、許金造、黃清哲、黃煌煇,1999,波浪通過多孔介質底床之理論解析,第
21屆海洋工程研討會,267-274。
4. 許泰文,1990,波浪作用下底部紊流邊界層之研究,國立成功大學水利及海洋工程
所博士論文。
5. 秦崇仁、越冲久,1993,波浪作用下砂紋床面上底部剪應力的實驗研究,水利學報,
9,2-9。
6. 李柏宏,1994,波浪作用下可透水底床之孔隙水壓及流場之變化,國立成功大學水
利及海洋工程所碩士論文。
7. 宋長虹、黃良雄,1995,具黏性之多孔介質流邊界條件之探討,第17屆海洋工程
研討會暨兩岸港口及海岸開發研討會論文集,881-895。
8. 郭金棟、李連芳,1995,振動流中作用於沙漣之力量,第17屆海洋工程研討會暨
兩岸港口及海岸開發研討會論文集,1279-1293。
9. 陳陽益,1996,真實流體中之前進波,港灣技術第十一卷第一期,57-88。
10.張興漢,1997,波浪通過剛性多孔介質底床特性之研究,國立成功大學水利及海洋
工程所碩士論文。
11.許泰文,2003,近岸水動力學,中國土木水利工程學會。
12.吳承傳、馬國軍,2004,關於流體流動的邊界滑移,中國科學G輯(物理學 力學 天
文學),34(6), 681-690。
13.邱大洪、孫昭晨,2006,波浪滲流力學,國防工業出版社。
14.陳勇州,2008,多孔介質流場定量量測與分析及其應用,中央大學機械工程研究所
碩士論文。
15.Auriault, J. L., 2009, On the domain of validity of Brinkman’s equation, Transport in
Porous Media, 79, 215–223.
16.Bagnold, R. A., 1946, Motion of waves in shallow water interaction between waves and
sand bottom, Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 187, 1-48.
17.Barnes, M.P., T. O'Donoghue, J. M. Alsina, T. E. Baldock, 2009, Direct bed shear stress
measurements in bore-driven swash, Coastal Engineering, 56, 853-867.
18.Batchelor, G. K., 1967, An introduction to fluid dynamics; Cambridge University
Press: Cambridge, UK.
19.Beavers, G. S. and D. D. Joseph, 1967, Boundary conditions at a naturally permeable
Wall, Journal of Fluid Mechanics, 30, 197-207.
20.Bear, J., 1972, Dynamics of fluids in porous media, New York, Elsevier, 166.
21.Berg, S., A. W. Cense, J. P. Hofman. and R. M. M. Smits , 2008, Two-phase flow in
porous media with slip boundary condition, Transport in Porous Media, 74, 275-292.
22.Blevins, R. D., 1977, Flow-induced vibration, Van Nostrand Reinhold Ltd.
23.Blondeaux, P., 1987, Turbulent boundary layer at the bottom of gravity waves, Journal
of Hydraulic Research, 25, 447-461.
24.Blondeaux, P., P. Scandura and G. Vittori, 2004, Coherent structures in an oscillatory
separated flow: numerical experiments, Journal of Fluid Mechanics, 518, 215-229.
25.Boussinesq, J., 1877. Essai sur la theorie des eaux courantes, Memoires presentes par
divers savants a l'Academie des Sciences (Paris), 23(1), 1-660.
26.Cao, B. Y., J. Sun, M. Chen and Z. Y. Guo, 2009, Molecular momentum transport at
fluid-solid interfaces in MEMS/NEMS: A Review, International Journal of Molecular
Sciences, 10, 4638-4706.
27.Chen, Y. L. and K. Q. Zhu, 2008, Couette-Poiseuille flow of Bingham fluids between
two porous parallel plates with slip conditions, Journal of Non-Newtonian Fluid
Mechanics, 153, 1-11.
28.Chen, Y. Y., G. Y. Chen, C. H. Lin and C. L. Chou, 2010, Progressive waves in real
fluids over a rigid permeable bottom, Coastal Engineering Journal, 52(1), 17-42.
29.Chen, Y. Y., G. Y. Chen and C. H. Lin, 2012, The slip factor and slip velocity on a
permeable bed, Journal of Coastal Research, 28 (2), 360-368.
30.Chu, Y. H. and L. W. Gelhar, 1972, Turbulent pipe flow with granular permeable
boundaries, Rep. No. 148, Ralph M. Parsons Laboratory for Water Resources and
Hydrodynamics, Dept. of Civil Engineering, M.I.T., Cambridge, Mass.
31.Davies, A. G., 1986, A model of oscillatory rough turbulent boundary layer,
Estuarine, Coastal and Shelf Science, 23, 353-374.
32.Dean, R. G and R. A. Dalrymple, 1991, Water wave mechanics for engineers and
scientists, World Scientific.
33.Ding, L. and Q.H. Zhang, 2010, Lattice Boltzmann simulation to characterize
roughness effects of oscillatory boundary layer flow over a rough bed, Proc. 32nd
International Conference on Coastal Engineering, Shanghai.
34.Dixen, M., F. Hatipoglu, B. M. Sumer and J. Fredsoe, 2008. Wave boundary layer
over a stone-covered bed, Coastal Engineering, 55, 1-20.
35.Fredsoe, J. and R. Deigaard, 1992, Mechanics of coastal sediment transport, World
Scientific.
36.Ferras, L. L., J.M. Nobrega, F. T. Pinho and O.S. e Carneiro, 2008, Implementation of
a slip boundary condition in a finite volume code aimed to predict fluid flows, II
Conferencia Nacional de Metodos Numericos em Mecanica de Fluidos e
Termodinamica, Universidade de Aveiro3.
37.Grass, A. J., R. R. Simons, R. D. Maciver, M. Mansour-Tehrani and A. Kalopedis,
1995, Shear cell for direct measurement of fluctuating bed shear stress vector in
combined wave/current flow, Proceedings of XXVIth IAHR Congress: Hydraulic
Research and its Applications next Century - HYDRA 2000, 1, 415-420.
38.Gualtieri, C., 2010, Numerical simulation of transition layer at a fluid-porous interface,
Proc. 15th International Congress on Environmental Modelling and Software Modelling for Environment’s Sake, Ottawa.
39.Hervet, H. and L. Leger, 2003, Flow with slip at the wall: from simple to complex
fluids, Comptes Rendus Physique, 4, 241–249
40.Hsu, T. W. and S. H. Ou, 1997, Wave boundary layers in rough turbulent flow, Ocean
Engineering, 24 (1), 25-43.
41.Huang, C. J. and H. H. Chang, 1999, Wave-induced response in a rigid porous bed, In:
Proceedings of the Ninth International Offshore and Polar Engineering Conference
(Brest, France, ISOPE), pp. 355–362.
42.Huo, G. and Y. G. Wang, 2007, A new measure for direct measurement of the bed shear
stress of wave boundary layer in wave flume, Journal of Hydrodynamics, 19 (4),
517-524.
43.Hwung, H. H.; K. S. Hwang, and B. H. Lee, 1996, Wave boundary layer flows and
pore pressures in permeable beds, Proceedings of the 25th International Conference of
Coastal Engineering, Orlando, Florida, 3219-3230.
44.James, D. F. and A. M. J. Davis, 2001, Flow at the interface of a model fibrous porous
medium, Journal of Fluid Mechanics, 426, 47-72.
45.Jensen, B. L., B. M. Sumer, and J. Fredsoe, 1989, Turbulent oscillatory boundary layers
at high Reynolds numbers, Journal of Fluid Mechanics, 206, 265-297.
46.Jonsson, I. G., 1966, Wave boundary layer and friction factors, Proc. 10th Coastal
Engineering Conference, Tokyo, I, 127-148.
47.Jonsson, I. G. and N.A. Carlsen, 1976, Experimental and theoretical Investigations in
an oscillatory turbulent boundary layer, Journal of Hydraulic Research, 14, 45-60.
48.Jonsson, I.G., 1980, A new approach to oscillatory rough turbulent boundary layers,
Ocean Engineering, 7, 109-152.
49.Justesen, P., 1988, Prediction of turbulent oscillatory flow over rough beds, Coastal
Engineering, 12 (3), 257-284.
50.Kajiura, K., 1968, A model of the bottom boundary layer in water waves, Bulletin of the
Earthquake Research Institute, 46, 75-123.
51.Kamphuis, J. W., 1975, Friction factor under oscillatory waves, Journal of the
Waterways Harbors and Coastal Engineering Division, ASCE, 101, 135-144.
52.Knudsen, M.,1909, Die Gesetze der Molekularstromung und der inneren
Reibungsstromung der Gase durch Rohren, Annalen der Physik, 28, 75-130.
53.Lamb, H., 1932, Hydrodynamics, Dover: New York, NY, USA, 1932.
54.Lauga, E., M. P. Brenner and H. A. Stone, 2005, Microfluidics: The no-slip boundary
condition, Ch. 15 in Handbook of Experimental Fluid Dynamics.
55.Liu, P.L.-F.; M. H. Davis and S. Downing, 1996, Wave-induced boundary layer flows
above and in a permeable bed, Journal of Fluid Mechanics, 326, 195-218.
56.Liu, Z., 2001, Sediment Transport, Aalborg University.
57.Lin, J. H., G. Y. Chen and Y. Y. Chen, 2012, The laboratory measurement of seabed
shear stress and the slip factor over a porous seabed, Journal of Engineering
Mechanics, ASCE, doi: 10.1061/(ASCE)EM.1943-7889.0000569.
58.Lohmann, I. P., J. Fredsoe, B. M. Sumer, and E. D. Christensen, 2006, Large Eddy
Simulation of the ventilated wave boundary layer, Journal of Geophysical Research,
111, 1-21.
59.Maxwell, J. C., 1879, On stresses in rarefied gases arising from inequalities of
temperature, Philosophical Transactions of the Royal Society of London, 170, 231-256.
60.Mirfenderesk, H. and I. R. Young, 2003, Direct measurement of the bottom friction
factor beneath surface gravity waves, Applied Ocean Research. 25, 269-287.
61.Munoz-Goma, R. J. and L. W. Gelhar, 1968, Turbulent pipe flow with rough and porous
Walls, Rep. No. 109, Hydrodynamics Laboratory, Dept. of Civil Engineering, M.I.T.,
Cambridge, Mass.
62.Neal, G. and W. Nader, 1974, Practical significance of Brinkman’s extension of Darcy’s
law: Couple parallel flows within a channel and a bounding medium, Canadian Journal
of Chemical Engineering, 52, 475-478.
63.Navier, C. L. M. H., 1823, Memoire sur les lois du movement des fluides, Memoires de
l’Academie Royale des Sciences de l’Institut de France, 6, 389-440.
64.Nielsen, P., 1992, Coastal Bottom Boundary Layers and Sediment Transport, World
Scientific.
65.Nielsen, P. and P. A. Guard, 2010, Vertical scales and shear stresses in wave boundary
layers over movable beds, Proceedings of the 32nd International Conference on Coastal Engineering, Shanghai.
66.Nield, D. A. and A. Bejan, 1992, Convection in Porous Media, Springer-Verlag, New York.
67.
68.Puleo, J. A., O. Mouraenko and D.M. Hanes, 2004, One-dimensional wave bottom
boundary layer model comparison: specific eddy viscosity and turbulence closure
models, Journal of Waterway, Port, Coastal, and Ocean Engineering, 130, 322-325.
69.Rankin, K. L. and R. I. Hires, 2000, Laboratory measurement of bottom shear stress on
a movable bed, Journal of Geophysical Research, 105, 17011-17019.
70.Rao, I. J., and K. R. Rajagopai, 1999, The effect of the slip boundary condition on the
flow of fluids in a channel, Acta Mechanica, 135, 113-126.
71.Riedel, P. H. and J. W. Kamphuis, 1973, A shear plate for use in oscillatory flow,
Journal of Hydraulic Reaseach, 11, 137-156.
72.Ruff, J. F. and L. W. Gelhar, 1970, Porous boundary effects in turbulent shear flow,
Rep. No. 126, Water Resources and Hydrodynamics Laboratory, Dept. of Civil
Engineering, M.I.T., Cambridge, Mass.
73.Saffman, P. G., 1971, On the boundary condition at the surface of a porous medium,
Studies in Applied Mathematics, L (2), 93-101.
74.Sahraoui, M., and M. Kaviany, 1992, Slip and no-slip velocity boundary conditions at
interface of porous, plain media, International Journal of Heat and Mass Transfer, 35
(4), 927-943.
75.Sana, A., A. R. Ghumman and H. Tanaka, 2009, Modeling of a rough-wall oscillatory
boundary layer using two-equation turbulence models, Journal of Hydraulic
Engineering, 135, 60-65.
76.Schlichting, H. and K. Gersten, 1997, Grenzschicht-Theorie, Springer
77.Seelam, J. K., P. A. Guard and T. E. Baldock, 2011, Measurement and modeling of bed
shear stress under solitary waves, Coastal Engineering, 58, 937-947.
78.Shields, A., 1936, Application of similarity principles and turbulence research to bed
-load movement, Hydrodynamics Laboratory Publ. No. 167, W. P. Ott, and J. C. van
Uchelen, trans., U.S. Dept. of Agr., Soil Conservation Service Cooperative Laboratory,
California Institute of Technology, Pasadena, Calif.
79.Simons, R., D. Myrhaug, L. Thais, G. Chapalain, L.-E. Holmedal and R. Maclver,
2000, Bed friction in combined wave-current flows, Coastal Engineering Conference,
ASCE, July 16-21, 2000, Sydney, Australia. Proceedings, 1, 216-226.
80.Sleath, J. F. A., 1970, Wave-induced pressure in bed of sand, Journal of Hydraulic
Division, ASCE, 96, 367-378.
81.Sleath, J. F. A., 1984, Sea Bed Mechanics, John Wiley & Sons.
82.Sleath, J. F. A., 1987, Turbulent oscillatory flow over rough beds, Journal of Fluid
Mechanics, 182, 360-409.
83.Straughan, B., 2008, Stability and wave motion in porous media, Springer.
84.Suga, K and S. Nishiguchi, 2009, Computation of turbulent flows over porous/fluid
interfaces, Fluid Dynamic Research. 41(1).
85.Sumer, B. M. and J. Fredsoe, 1997, Hydrodynamics around cylindrical structures,
World Scientific.
86.Sumer, B. M. and J. Fredsoe, 2002, The mechanics of scour in the marine environment,
World Scientific.
87.Swart, D. H., 1974, Offshore sediment transport and equilibrium beach profiles, Delft
University of Technology, Delft.
88.Swart, D. H and C. A. Fleming, 1980, Long shore water and sediment movement,
Proceedings of the 17th Conference on Coastal Engineering Conference, 2.
89.Thomson, W.(Lord Kelvin), 1856, On the electro-dynamic qualities of metals,
Proceedings of the Royal Society of London, 8, 546-550.
90.Vinogradova, O. I., 1995, Drainage of a thin liquid film confined between hydrophobic
surfaces, Langmuir, 11, 2213~2220.
91.White, F. M., 1991, Viscous fluid flow, McGraw-Hill.
92.You, Z. J., D. L. Wilkinson and P. Nielsen, 1992, Velocity distribution in a turbulent oscillatory boundary layer, Coastal Engineering, 18, 21-38.
93.You, Z. J., 2000, A simple model of sediment initiation under waves, Coastal
Engineering, 41, 399-412.
94.You, Z. J. and B. S. Yin, 2007, Direct measurement of bottom shear stress under water
waves, Journal of Coastal Research, SI50, 1132-1136.
95.Zeng, Z. and G. Reid, 2006, A Criterion for Non-Darcy Flow in Porous Medium,
Transport in Porous Medium, 63, 57-69.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code