Responsive image
博碩士論文 etd-0117112-110509 詳細資訊
Title page for etd-0117112-110509
論文名稱
Title
在智慧型影像監控網路上實作點對點的動態位元傳輸率調整
Implementations of Dynamic End-to-End Bit-rate Adjustments for Intelligent Video Surveillance Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-01-12
繳交日期
Date of Submission
2012-01-17
關鍵字
Keywords
動態調整、影像參數
Quality, Bit-rate, Video parameter, FPS, Picture size
統計
Statistics
本論文已被瀏覽 5801 次,被下載 671
The thesis/dissertation has been browsed 5801 times, has been downloaded 671 times.
中文摘要
本論文提出一套在智慧型監控網路上做動態調整影像參數的機制。可調整的影像參數包括每秒可播放的張數(FPS)、影像品質(Quality)以及畫面大小(Picture size),我們會根據不同的條件來選擇調整不同的影像參數以符合網路頻寬。例如,當畫面有alarm發生時(例如有車子經過),我們調整FPS;或是當網路發生壅塞時,我們則會利用每秒所收到的影像封包資料量來判斷此時的網路壅塞程度,並決定此時該調整的影像參數應為Quality或是Picture size,以維持畫面的流暢度。
為了驗證我們的機制,我們在Linux平台上實作了調整三個參數的機制,這三個參數包括Quality、Picture size、FPS。為了實作調整此三個參數,我們必須從client端新建一條HTTP連線到camera,並製作出相對應的control messages給camera,讓camera能夠藉此去改變此三個影像參數。除了動態改變這三個影像參數外,我們也根據每個封包抵達client的時間差值(diff)實做了影像恢復機制。在實作完成後,我們測試當client端受到不同背景資料流的影響下,使用我們的影像調整機制是否可讓影像畫面繼續保持其流暢度,且利用diff來判斷恢復影像參數後的網路狀況再決定是否需要將畫面保持在較高的影像參數,避免在網路壅塞時使用較高的影像參數造成影像封包被延遲或是丟棄,使得影像播放不順暢。
Abstract
In the Thesis, we propose a mechanism to dynamically adjust video parameters in an intelligent video surveillance network. Whenever there is an alarm or network encounters congestion, we could adjust video parameters including Frames per Second (FPS), Quality, and Picture Size to adapt to network bandwidth. For examples, we can adjust FPS when an alarm exists in the surveillance system; we can adjust the Quality or Picture Size by counting the total number of video packets received per second to obtain a smooth video when network is congested
To demonstrate the proposed schemes, we implement these three adjustable parameters, Quality, Picture size, and FPS on a Linux platform. To do this, we establish a new HTTP connection from a client to a camera and then we develop the corresponding control messages issued by the client in order to change the video parameters. In addition, we implement a video recovery mechanism by measuring the differences in arrival time between every packet (referred to as diff). Finally, we observe with our proposed scheme whether the video quality can be smoother under different background traffics. In the video recovery mechanism, we utilize diff to decide whether a higher quality picture should be persisted or downgraded to a lower quality picture to avoid packet loss under network congestion.
目次 Table of Contents
第一章 導論 1
1.1 研究動機 1
1.2 研究方向與方法 1
1.3 章節介紹 3
第二章 智慧型影像監控系統 4
2.1 DVR與IP CAMERA 4
2.2 IVS 5
2.3 相關研究 7
2.3.1 Source-based Adjustment 7
2.3.2 中間節點的回饋控制 8
2.3.3 Receiver-based Adjustment 9
2.3.4 各種不同機制比較 11
2.4 本論文提出的機制 12
第三章 動態調整影像參數 13
3.1 建立新的HTTP 連線 13
3.1.1 Quality與 Picture Size的改變 14
3.1.2 FPS的改變 15
3.2 動態調整影像參數 19
3.2.1 改變Quality與Picture Size 19
3.2.1.1 網路環境壅塞時 20
3.2.1.2 網路環境不壅塞時 22
3.2.2 改變FPS 24
第四章 LINUX實作與量測 26
4.1 實驗環境 26
4.2 LINUX實作 28
4.2.1 Receiving Module 28
4.2.1.1 影像資料量的異常 28
4.2.1.2 封包抵達時間的差值 31
4.2.1.3 異常畫面的Alarm訊息 32
4.2.2 Sending Module 34
4.3 量測結果 35
4.3.1 Quality變化的量測 36
4.3.2 Picture Size變化的量測 38
4.3.3 FPS變化的量測 40
4.3.4 影像恢復 42
4.3.4.1 網路壅塞時恢復影像參數 44
4.3.4.2 網路順暢時恢復影像參數 45
第五章 結論與未來工作 47
5.1 結論 47
5.2 未來工作 49
參考文獻 50
INDEX 54
參考文獻 References
[1] D. Wu, Y. T. Hou, and Y-Q Zhang, “Transporting Real-Time Video over the Internet: Challenges and Approaches,” Proceedings of the IEEE, vol. 88, no. 12, pp. 1855-1875, Dec. 2000.
[2] N. Kamnoonwatana, A. Kuprianov, P. Saengudomlert, T. Sanguankotchakorn, and K. Kanchanasut, “DVTS Video Frame Rate Adjustment Based on Motion Detection,” Automated Production of Cross Media Content for Multi-Channel Distribution, pp. 229-235, Dec. 13-15, 2006.
[3] Y. H. Xiong, M. Wu, and W. J. jia, “Rate Adaptive Real-Time Video Transmission Scheme over TCP Using Multi-Buffer Scheduling,” The 9th International Conference for Young Computer Scientists, pp. 354-361, Nov. 18-21, 2008.
[4] D. Wu, Y. T. Hou, W. Zhu, H-J Lee, T. Chiang, Y-Q Zhang, and H. J. Chao, “On End-to-End Architecture for Transporting MPEG-4 Video Over the Internet,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 6, pp. 923-941, Sep. 2000.
[5] H. Yoshida, K. Nogami, and K. Satoda, “Proposal and Evaluation of Joint Rate Control for Stored Video Streaming,” IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR), pp. 1-6, Jun. 8-10, 2010.
[6] S. Chuaywong, S. Kamolphiwong, and T. Kamolphiwong, “Adaptive Quality Control for Real-Time MPEG-4 Video Communications,” IEEE International Symposium on Communications and Information Technology (ISCIT), vol. 1, pp. 310-314, Oct. 12-14, 2005.
[7] M. A. Bonuccelli, G. Giunta, F. Lonetti, and F. Martelli, “Dynamic Frame Rate Adjustment for Real-time Video in Vehicular Networks,” International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1-4, Jun. 18-20, 2009.
[8] M. A. Bonuccelli, G. Giunta, F. Lonetti, and F. Martelli, “Real-time Video Transmission in Vehicular Networks,” Mobile Networking for Vehicular Environments (MOVE), pp. 115-120, May 2007.
[9] R. R. Chodorek and A. Chodorek, “ECN-Capable TCP-friendly Layered Multicast Multimedia Delivery,” International Conference on Computer Modelling and Simulation, pp. 553-558, Mar. 25-27, 2009.
[10] M. M. Kadhum and S. Hassan, “Fast Congestion Notification Mechanism for ECN-Capable Routers,” International Symposium on Information Technology (ITSIM), vol. 4, pp. 1-6, Aug. 26-28, 2008.
[11] J. Kim, J. Koo, and K. Chung, “T-NASS: TCP-Friendly Network Adaptive SVC Streaming Protocol,” IEEE International Conference on Computer Science and Information Technology (ICCSIT), pp. 620-623, Aug. 8-11, 2009.
[12] M. Handley, S. Floyd, J. Padhye, and J. Widmer, “TCP Friendly Rate Control (TFRC) : Protocol Specification,” IETF RFC 3448, Jan. 2003.
[13] O. B. Karimi, M. Fathy, and S. Yousefi, “Application level Wireless Multi-level ECN for Video and Real-time Data,” International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies (ICN/ICONS/MCL), pp. 137, Apr. 23-29, 2006.
[14] B. Zheng and M. Atiquzzaman, “TSFD: Two Stage Frame Dropping for Scalable Video Transmission over Data Networks,” IEEE Workshop on High Performance Switching and Routing, pp. 43-47, May 2001.
[15] T-L Sheu and Y-S Chi, “Intelligent Stale-Frame Discards for Real-Time Video Streaming over Wireless Ad Hoc Networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2009, No. 486165, pp. 1-10, Dec. 2009.
[16] D. Morikawa, S. Ota, A. Yamaguchi, and M. Ohashi, “A Feedback Rate Control of Video Stream in Best-Effort High-Speed Mobile Packet Network,” International Symposium on Wireless Personal Multimedia Communications (WPMC), vol. 2, pp. 807-811, Oct. 27-30, 2002.
[17] B. J. Vickers, C. Albuquerque, and T. Suda, “Source-Adaptive Multilayered Multicast Algorithms for Real-Time Video Distribution,” IEEE/ACM Transactions on Networking, vol. 8, no. 6, pp. 720-733, Dec. 2000.
[18] E. Tan, J. Chen, S. Ardon, and E. Lochin, “Video TFRC,” IEEE International Conference on Communications (ICC), pp. 1767-1771, May 19-23, 2008.
[19] H-F Hsiao and J-N Hwang, “A Max-Min Fairness Congestion Control for Layered Streaming of Scalable Video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 9, pp. 1074-1085, Sep. 2006.
[20] C. Huang and L. Xu, “SRC: Stable Rate Control for Streaming Media,” IEEE Global Telecommunications Conference (GLOCOM), vol. 7, pp. 4016-4021, Dec. 1-5, 2003.
[21] A. Raghuveer, E. Kusmierek, and D. H. C. Du, “A Network-Aware Approach for Video and Metadata Streaming,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 8, pp. 1028-1040, Aug. 2007.
[22] P. B. Ssesanga and M. K. Mandal, “Efficient Congestion Control for Streaming Scalable Video over Unreliable IP Networks,” International Conference on Image Processing (ICIP), vol. 3, pp. 2059-2062, Oct. 24-27, 2004.
[23] L. Lehikoinen and T. Raty, “Adaptive Real-Time Video Streaming System for Best-Effort IP Networks,” International Conference on Systems (ICONS), pp. 131-137, Mar. 1-6, 2009.
[24] G. Y. Hong, B. Fong, and A. C. M. Fong, “QoS Control for Internet Delivery for Video Data,” International Conference on Information Technology: Coding and Computing (ITCC), pp. 458-461, Apr. 8-10, 2002.
[25] S. Ahmad, N. D. Gohar, and A. Kamal, “A Dynamic Congestion Control Mechanism for Real Time Streams over RTP,” International Conference on Advanced Communication Technology (ICACT), vol. 2, pp. 961-966, Feb. 12-14, 2007.
[26] T. Ahmed, A. Mehaoua, R. Boutaba, and Y. Iraqi, “Adaptive Packet Video Streaming Over IP Networks: A Cross-Layer Approach,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 385-401, Feb. 2005.
[27] H. Yang, X. Chen, and R. Hu, “An End-to-End Content-Aware Congestion Control Approach for MPEG Video Transmission,” International Conference on Future Generation Communication and Networking (FGCN), vol. 1, pp. 122-125, Dec. 13-15, 2008.
[28] S. Deshpande and A. Klemets, “Buffering Control Methods and Streaming Protocol Extensions for Adaptive Media Streaming,” IEEE Consumer Communications and Networking Conference (CCNC), pp. 308-312, Jan. 2007.
[29] X. Yang and L. Lei, “End-to-End Congestion Control for H.264/SVC,” International Conference on Networking (ICN), pp. 84, Apr. 22-28, 2007.
[30] C. Liu, I. Bouazizi, and M. Gabbouj, “Multi-Buffer based Congestion Control for Multicast Streaming of Scalable Video,” IEEE International Conference on Multimedia and Expo (ICME), pp. 998-1003, Jul. 19-23, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code