Responsive image
博碩士論文 etd-0121113-030803 詳細資訊
Title page for etd-0121113-030803
論文名稱
Title
交替型磺酸化聚芳香醚高分子於燃料電池質子交換膜 之合成及應用
Synthesis and Application of Alternative Type Sulfonated Poly(arylene ether)s for Proton Exchange Membrane Fuel Cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-08
繳交日期
Date of Submission
2013-01-21
關鍵字
Keywords
磺酸化、微相分離、燃料電池、質子交換膜、聚芳香醚
proton exchange membrane, fuel cell, sulfonated, ion exchange capacity
統計
Statistics
本論文已被瀏覽 5688 次,被下載 0
The thesis/dissertation has been browsed 5688 times, has been downloaded 0 times.
中文摘要
質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell,PEMFC)已被公認為未來之主要替代能源轉換之一。然而其仍有許多不足之處,主要包括:(1) 市場價格昂貴; (2) 高溫時的壽命及穩定性不理想; (3) 水熱管理系統複雜及(4) 對CO敏感,催化劑成本高等問題尚待克服,因此距離廣泛的商業化要求,仍有很長遠的路要走。

作為好的質子交換膜必須具備:良好的微相分離型態、高質子導電度、尺寸安定、熱穩定性。目前文獻上已刊登sulfonated poly(ether ether ketone) (SPEEK)、sulfonatedpolysulfone(SPSF)、sulfonated polysulfide sulfone(SPSS)及polybenzimidazole(PBI)等高分子之磺酸化衍生物,但為了要達到良好的質子導電度,通常需要具有較高的磺酸化程度,亦即具有較大的離子交換含量(Ion Exchange Capacity,IEC),卻使得上述材料本身的熱穩定性、尺寸安定性、吸水率及氧化穩定性皆有所下降。因此限制了燃料電池元件的操作效率。

本論文以具高度立體障礙性結構之九苯環二醇單體為主體,分別與三種不同二氟單體進行親核性(nucleophilic)聚縮合反應,獲得不同結構形態之聚芳香醚高分子(JP1、JP2、JP3),再各以三種不同濃度的磺酸化試劑控制其高分子的磺酸化程度。此系列新穎聚芳香醚高分子的分子量介於8.78×104~1.1×105 g/mol,經由高分子主鏈之剛性結構設計,使其不僅擁有良好之機械強度、熱安定性,且具有超高的熱裂解溫度(高於500℃)。高分子JP1、JP2、JP3經過磺酸化後,擁有不錯之IEC數值(0.74~2.23meq/g),且在相對濕度100%,溫度90oC下有高吸水率137.58%~179.56%,且不因高溫而溶於水中,尺寸變化率幾乎沒有改變;與其他磺酸化高分子相比,具有相對高的吸水率和相對低的尺寸變化率。綜合以上實驗結果,推估此系列的磺酸化聚芳香醚高分子運用在燃料電池之質子交換膜中會有不錯的成效。

關鍵詞: 質子交換膜、燃料電池、微相分離、磺酸化、聚芳香醚
Abstract
Proton exchange membrane fuel cell (PEMFC) has been recognized as the one of the alternative energy conversion in the future. However, there are still many issues needed to be done before commercialization,including: (1) the cost is expensive ; (2) lifetime and stability at high temperatures is not ideal ; (3) management system of water and heat is complex, and (4) catalysts are sensitive to CO and cost is still higher…etc, wait to be overcome, so there is still a very long time for commercialization.
Recently, a lot of publications mentioned about some sulfonatied polymer ,for example, like: sulfonated of poly(ether ether ketone) (SPEEK)、sulfonated polysulfone (SPSF)、 sulfonated polysulfide sulfone(SPSS), and polybenzimidazole(PBI).For achieving high proton conductivity, usually they need a high degree of sulfonation, which means owning a high Ion Exchange Capacity(IEC). But which in turn leads to a decrease in the electrochemical、dimensional stability、water uptake、oxidative stability.
In this research, we adopt the structure of a high degree of nine benzenoid bisphenol monomer with steric hindrance as the main body, with three different bisfluoro monomers via nucleophilic polycondensation reaction for obtaining different morphology of poly aromatic ether polymer, and then sulfonated these three polymers with different concentrations of sulfonic acid for controlling its degree of sulfonation of the polymer, derived from a total of nine different degree of sulfonation of poly aromatic ether polymer. The main purpose was for investigating the poly aromatic ether polymer via the sulfonic acid reaction and the application feasibility of the proton exchange membrane for fuel cell , and for observing the influence of different monomer types of microphase separation on the efficiency of the fuel cell device.
目次 Table of Contents
摘要.........................................................................................I
ABSTRACT ...........................................................................II
第一章 緒論..........................................................................1
1.1前言..................................................................................1
1.2燃料電池之發展歷史及簡介..........................................1
1.3質子交換膜燃料電池之工作原理..................................3
1.4質子交換膜種類之介紹及文獻回顧..............................5
1.5研究動機.........................................................................12
第二章儀器及藥品介紹.......................................................13
2.1藥品.................................................................................13
2.2實驗儀器與測試方法.....................................................13
第三章實驗...........................................................................18
3.1二醇單體之製備流程.....................................................18
3.2 二醇單體合成................................................................19
3.2.1 1,3-Bis(p- bromophenyl)-2-propanone..............19
3.2.2 2,5-Bis(4-bromophenyl)-3,4-diphenylcyclopenta-
2,4-dienon................................................................20
3.2.3 4,4-Dibromo-2,3-diphenyl-[1,1; 4,1]-terphenyl
...................................................................................21
3.2.4 4,4’’’’-Difluoro-3,3’’’’-bistrifluoromethyl-
2’’,3’’,5’’,6’’-tetraphenyl-[1,1’;4’,1’’;4’’,1’’’;4’’’,1’’’’]-
pentaphenyl..............................................................22
3.2.5 4,4’’’’-Dihydroxy-2’’,3’’,5’’,6’’-tetraphenyl-
[1,1’;4’,1’’;4’’,1’’’;4’’’,1’’’’]-pentapphenyl..............24
3.3 4,7-dibromobenzo[c][1,2,5]thiadiazole
M3單體聚合.................................................................25
3.4 高分子製備流程...........................................................27
3.5 高分子聚合...................................................................28
3.5.1 高分子(JP1)...............................................................28
3.5.2 高分子(JP2)...............................................................29
3.5.3 高分子(JP3)...............................................................30
3.6高分子薄膜製備.............................................................31
3.7高分子磺酸化.................................................................32
3.8高分子磺酸化後處理.....................................................34
3.8.1薄膜製備......................................................................34
3.8.2離子交換含量(IEC)測定.............................................34
3.8.3 水分攝取能力.............................................................36
3.8.4 Hydration number(λ)................................................37
第四章結果與討論...............................................................38
4.1熱穩定性分析.................................................................38
4.2磺酸化後高分子之吸水率分析及HYDRATION
NUMBER(Λ)..................................................................40
4.3磺酸化後高分子熱裂解溫度分析.................................45
4.4磺酸化後之微相分離型態.............................................48
4.5溶解度測試.....................................................................51
第五章結論...........................................................................52
參考文獻...............................................................................53
附錄.......................................................................................56
參考文獻 References
[1] Hickner MA, Ghassemi H, Kim YS, Einsla BR and
McGrathJE. Chem Rev 2004; 104: 4587–4612.
[2] Liu BJ, Kim DS, Guiver MD, et al. Membrane
Technology:Membranes for Energy Conversion,
Peinemann KV and Nunes SP (eds.). New York:
Wiley -VCH, 2008.
[3] Chen Y, Meng Y and Hay AS. Macromolecules2005;
38: 3564–3566.
[4] Tseung A C C. Past,Battery Bimonthly. 2010, 22,
4667–4690.
[5] T. J. Peckham and S. Holdcroft, Adv. Mater. 2002,
32, 130–132.
[6] K. Matsumoto, T. Higashihara, and M. Ueda,
polymer, 2009, 50, 5341-5357.
[7] B. Lafitte and P. Jannasch, Adv. Funct. Mater. ,2007,
17, 2823-2834.
[8] N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, M. D.
Guiver, Angew. Chem. Int. Ed., 2011, 50,9158-9161.
[9] E. M. W. Tsang, Z. Zhang, A. C. C. Yang, Z. Shi, T. J.
Peckham, R. Narimani, B. J. Frisken, S.Holdcroft,
Macromolecules, 2009, 42, 9467–9480.
[10] Kenji M., Allan S. H., J. Polym. Sci. Part A: Polym.
Chem., 2001, 39, 3211–3217.
[11] Kenji M., Kenichi O., Eishun T., and Allan S. Hay,
Macromolecules, 2001, 34, 2065-2071.
[12] Sumiko M., Antisar R. H., Catherine L., Julie G.,
Daniel G., and Allan S. H., Macromolecules
2008,41, 277-280.
[13] Sumiko Matsumura, Antisar R. Hlil, Catherine
Lepiller, Julie Gaudet, Daniel Guay, Zhiqing
Shi,Steven Holdcroft, and Allan S. H.,
Macromolecules, 2008, 41, 281-284.
[14] Sumiko M., Antisar H., Naiying Du, Catherine L.,
Julie G., Daniel G., Zhiqing S., Steven H., Allan
S.H., J. Polym. Sci. Part A: Polym. Chem., J.
Polym. Sci. Part A: Polym. Chem., 2008, 46, 3860-
3868.
[15] Matsumura, S., Hlil, A. R., Hay A. S., J Polym Sci,
Part A: Polym Chem., 2008, 46, 6365-6375.
[16] Sumiko M., Antisar R. H., Mohammed A. K. Al-
Souz, Julie G., Daniel G., Allan S. H., J. Polym.
Sci.Part A: Polym. Chem., 2009, 47, 5461-5473.
[17] Shuanghong T., Yuezhong M., Allan S. H.,
Macromolecules, 2009, 42, 1153-1160.
[18] Shuanghong T., Yuezhong M., Allan S. H., J.
Polym. Sci. Part A: Polym. Chem., 2009, 47,4762-
4773.
[19] D. Chen, S. Wang, M. Xiao, Y. Meng A. S. Hay, J.
Mater. Chem., 2011, 21, 12068-12077.
[20] Kazuya M., Tomoya H., and Mitsuru U.,
Macromolecules 2009, 42, 1161-1166.
[21] Kazuya M., Tomoya H., and Mitsuru U., J. Polym.
Sci. Part A: Polym. Chem., 2009, 47, 3444-3453.
[22] K. Miyatake, B. Bae, M. Watanabe, Polym. Chem.,
2011, 2, 1919-1929.
[23] C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee,
Progress in Polymer Science, 2011, 36, 1443-
1498.
[24] W. Y. Huang, B. R. Liaw, P. T. Huang, M. Y. Chang,
Y. K. Han, Macromolecules, 2007, 40,8649-8657.
[25] W. Y. Huang and S. Y. Huang, Macromolecules,
2010, 43, 10355-10365.
[26] B. R. Liaw, W. Y. Huang, P. T. Huang, M. Y. Chang,
Y. K. Han, Polymer, 2007, 48, 7087-7097.
[27] W. Y. Huang, M. Y. Chang, Y. K. Han and P. T.
Huang, J. Polym. Sci. Part A: Polym. Chem.,
2010,48, 5872-5884.
[28] Chun Che Lee, Wen -Yao Huang, Wen-Chi Hung,
Chun-Te Lee, , in press.
[29] C. C. Lee, W. Y. Huang , Polymer Journal, 2010,
43, 180-185.
[30] Sumiko Matsumura, Antisar R. Hlil, Catherine
Lepiller, Julie Gaudet, Daniel Guay, Zhiqing
Shi,Steven Holdcroft, and Allan S. H.,
Macromolecules, 2008, 41, 281-284.
[31] http://khvic.nsysu.edu.tw/khvic/JL/05.htm
[32]eshare.stut.edu.tw/EshareFile/2010_11/2010_11_c9f720c5.doc
[33] http://khvic.nsysu.edu.tw/khvic/JL/78.mht
[34] W.Schärtl, Light Scattering from Polymer Solutions
and Nanoparticle Dispersions, 2006, Germany.
[35] N. C. Foster, Ph. D., P. E., Chemithon,1997.
[36] W. A. Thaler, Macromolecules, 1983, 16, 623.
[37] Y. C. Yen, Y. S. Ye, C. C. Cheng, Polymer, 2010,
51, 84.
[38] Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T.
Tsai, F. C. Chang, Polymer,2009, 50, 3196.
[39] P. N. Pintauro, H. Yang, United States Patent.
(2002)
[40] T. E. Springer, T. A. Zawodzinski, and S.
GottesfeldJ. Electrochem. Soc., 1991,138, 2334.
[41] 何基任,應用於質子交換膜之磺酸化聚芳香醚高分
子,國立中山大學碩士論文 (2011)
[42] S. P. Tung and B. J. Hwang, J. Membr. Sci., 2004 ,
241, 315.
[43] M. A. Hickner and B. S. Pivovar, , 2005, 5, 213.
[44] A. Guinier and G. Fournet, Wiley Interscience,
1955, NewYork.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.227.251.194
論文開放下載的時間是 校外不公開

Your IP address is 3.227.251.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code