Responsive image
博碩士論文 etd-0122113-221423 詳細資訊
Title page for etd-0122113-221423
論文名稱
Title
承載U型管浮式平台之動力分析
Dynamic Analysis of a Floating Structure with a U-tube
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-18
繳交日期
Date of Submission
2013-01-22
關鍵字
Keywords
非線性數值水槽、邊界元素法、浮式結構物、調諧液柱阻尼器
boundary element method, natural frequency, tuned liquid column damper, floating platform
統計
Statistics
本論文已被瀏覽 5701 次,被下載 392
The thesis/dissertation has been browsed 5701 times, has been downloaded 392 times.
中文摘要
浮式結構物在海洋工程上被應用的相當廣泛,如用於海岸保護的消坡設施、開採海洋資源的海上平台、海上箱網養殖平台等,如何建造穩定的浮式結構物來擷取海洋資源,一直是海洋工程界關心的議題,在本研究中探討在浮式平台上裝載一具調諧液柱阻尼器(Tuned Liquid Column Damper;TLCD)後,浮台遭受到波浪作用後的運動特性及TLCD管內水位的變化特性。
本數值模式以勢能理論為基礎,採用邊界元素法發展二維非線性數值水槽,模擬裝載TLCD之浮式平台在波浪場中的動力特性,並於造波水槽內進行水工模型實驗,以實驗結果來驗證數值模式的正確性。
實驗結果發現,當波浪頻率與TLCD液柱的自然頻率接近時,TLCD管內液柱會大幅的上升,而且會抑制surge及pitch的運動,而TLCD對heave運動的影響較不明顯。數值模式與實驗結果比較顯示,在共振頻率附近,受到黏性效應的影響,數值模式會有高估的現象而且容易造成數值發散,為了降低黏性效應的影響,在數值模式中加入非耦合的阻尼係數矩陣,其結果發現當阻尼比ζ=0.06時,在共振頻率附近的運動反應有明顯的下降,使得數值計算整體的趨勢與實驗結果更為吻合。至於 TLCD水位震盪方面,研究結果發現,當有效液柱長(Le)增加會使得共振頻率的位置朝低頻處移動,當水平液柱長b越短、垂直液柱高hv越高、垂直及水平管口寬(Av和Ah)越窄及管口水平垂直截面積比(Ar=Av/Ah)越小都能夠有效的使水位振幅比(A2/A1)的峰值上升。
Abstract
Floating structures are widely used in marine engineering, for example, wave absorption facilities for the protection of the coast, offshore platforms for the exploitation of marine resources, the sea cages platform for aquaculture. How to design stable floating structures to capture marine energy has become one of the main interests in ocean engineering. This study is to investigate the liquid oscillatory phenomenon inside the tuned liquid column damper (TLCD) and the dynamic behaviors of its floating platform under regular waves conditions.
The nonlinear numerical wave tank, developed based on the velocity potential function and the boundary element method (BEM), is used to simulate dynamic properties including surge, heave, pitch, and tension responses. In addition, a physical model of the floating platform with a TLCD was tested in a hydrodynamic wave tank to validate a 2-D numerical model for simulation of wave- structure interaction.
The experimental results indicate that when the incident wave frequency near the natural frequency of the TLCD, fluid in the TLCD column would oscillate vigorously but other motions such as surge, pitch and heave will be suppressed. The comparisons of numerical simulations and experimental data indicate that the numerical predictions are larger than measurements especially at frequencies near to the resonant frequency. This discrepancy is probably due to the fluid viscous effect. To overcome this problem, an uncoupled damping ratio (ζ) is adopted and incorporated into the vibration system. The results showed that when damping ratio ζ=0.06 the responses of body motion near the resonant frequency have significantly reduced and matched to the measurements. The results of the liquid column oscillation in TLCD reveal that the increase of effective length of liquid column (Le), the resonant frequency of TLCD would move downward. The peak value of the amplitude ratio (A2/A1) would increase as the length of the horizontal column (b), the cross-sectional area of the vertical column (Av), the cross-sectional area of the horizontal column (Ah), and the ratio of the cross-sectional areas (Av/ Ah) were reduced.
目次 Table of Contents
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
符號對照表 xiii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 繫纜式浮式結構物 2
1.2.2 數值水槽 3
1.2.3 TLCD之研究 3
1.2.4 水工模型實驗之研究 5
1.3 研究目的 5
1.4 研究方法 5
1.5 文章架構 6
第二章 理論基礎 7
2.1 二維數值水槽 7
2.1.1控制方程式 8
2.1.2邊界積分方程式 8
2.2 邊界條件 9
2.2.1造波邊界 9
2.2.2 Ω1自由液面邊界 10
2.2.3數值消波區 11
2.2.4直立壁及底床邊界 12
2.2.5浮式平台結構物邊界條件 12
2.2.6 TLDC水槽結構物邊界條件 13
2.2.7 Ω2自由液面邊界 13
2.3 結構物外力計算 13
2.4 模態分解法 14
2.5 錨碇系統 18
2.6 含阻尼效應的自由振動系統 19
2.7 數值模式流程 20
第三章 水工模型實驗 22
3.1 實驗目的 22
3.2 實驗規劃 22
3.2.1 實驗模型尺寸及材質 22
3.2.2 實驗儀器與設備 24
3.2.3 量測項目 29
3.2.4 實驗佈置 30
3.2.5 水工模型實驗實驗步驟 30
3.2.6 TLCD液柱自然頻率測量 32
3.2.7實驗波浪設計條件 32
3.3 分析方法 33
3.3.1 水位分析 33
3.3.2 張力分析 34
3.3.3 平台剛體運動分析 34
3.3.4 TLCD自然頻率分析 36
第四章 結果與討論 38
4.1 實驗結果與數值模式之比較 38
4.2 數值模式的應用 43
4.2.1改變入射波波高(HI)的影響 43
4.2.2 改變TLCD尺寸的影響 47
4.2.2.1 改變TLCD垂直液柱高hv的影響 48
4.2.2.2改變TLCD水平液柱長b的影響 52
4.2.2.3 TLCD有效液柱長Le不變,改變hv及b的影響 56
4.2.2.4同時改變TLCD的Av及Ah的影響 60
4.2.2.5僅改變垂直管口寬Av的影響 64
4.2.2.6 僅改變水平管口寬Ah的影響 68
4.2.3改變浮台寬度L1的影響 72
4.2.4改變浮台錨碇角度θ0的影響 75
第五章 結論與建議 78
5.1結論 78
5.2建議 79
參考文獻 81
附錄A 結構物運動及邊界條件 84
附錄B 數值方法 90
附錄C 影像處理 94
附錄D 反射率計算 103
附錄E 質量慣性矩 105
附錄F U型管液柱運動方程式 108
附錄G TLCD水槽內液體的影響 110
參考文獻 References
1. 吳子敬(2009)「震盪U型管波能轉換裝置於造波水槽之試驗研究」,國立中山大學海洋環境及工程學系碩士論文。
2. 唐宏結(2008)「箱網養殖浮式平台之研究」,國立中山大學海洋環境及工程學系博士論文。
3. 翁庶航(2000)「繫纜式浮體結構物裝設調諧液柱阻尼器之動力分析及減振研究」,國立中山大學海洋環境及工 程學系碩士論文。
4. 陳韋銘(2008)「錨碇雙浮筒動力分析之研究」,國立中山大學海洋環境及工程學系碩士論文。
5. 黃添成(2002)「水下雷射掃瞄量測系統CCD 攝影機之校正」,國立中山大學海洋環境及工程系研究所碩士論文。
6. 馮至廷(2010)「裝載液體之浮式平台動力分析」,國立中山大學海洋環境及工程系研究所碩士論文。
7. Black, J.L. and Mei, C.C., 1969. Scattering of surface waves by rectangular obstacles in water of finite depth. J. Fluid Mechanics, Vol. 38, pp. 499-511.
8. Black, J.L., Mei, C.C. and Bray, M.C.G., 1971. Radiation and scattering of water waves by rigid bodies. J. Fluid Mechanics, Vol. 46, pp. 151-164.
9. Brebbia, C. A., and Dominguez, J., 1989. Boundary Elements: An Introductory Course, McGraw - Hill, New York, 45-91, 267-268.
10. Chang, C. C., Hsu, C. T., 1998. Control performance of liquid column vibration absorbers. Engineering Structures, Vol. 20, pp. 580–586.
11. Cho, B.H., Yang, D.S., Park, S.Y., Choi, K.S., Lee, D.H., Byun, S.H., Jung, H. ,2011. Modeling and control of a 75kW class variable liquid-column oscillator for highly efficient wave energy converter. Ocean Engineering, Vol. 38,pp 436-443
12. Chopra, A.K., 2001. Dynamics of Structures: Theory and Application to Earthquake Engineering. Prentice-Hall, Inc., Upper Saddle River.
13. Cointe, R. 1990. Numerical simulation of a wave channel. Engineering Analysis with Boundary Elements 7(4), 167-177.
14. Gao, H., Kwok, K.C.S., Samali, B., 1997. Optimization of tuned liquid column dampers. Engineering Structures 19(6), 476-486
15. Goda, Y., Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments. Proceedings of the 15th International Conference Coastal Engineering, pp. 628-650.
16. Goda, Y., 1998. Perturbation analysis of nonlinear wave interactions in relatively shallow water. Proc. 3rd International Conference on Hydrodynamics, pp. 33-51
17. Grilli, S.T., Svendsen, I.A., 1990. Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Engineering Analysis with Boundary Elements 7(4), 178-195.
18. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D., 1997a. Characteristics of liquid column vibration absorbers (LCVA).I. Engineering Structures 19(2), 126-134.
19. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D., 1997b. Characteristics of liquid column vibration absorbers (LCVA)−II. Engineering Structures 19(2), 135-144.
20. Koo, W.C., Kim, M.H., 2004. Freely floating-body simulation by a 2D fully nonlinear numerical wave tank. Ocean Engineering 31, 2011-2046.
21. Lee, H. H., Wong, S. H., and Lee, R. S., 2006. “Response mitigation on the offshore floating platform system with tuned liquid column damper,” Ocean Engineering, Vol. 33, pp. 1118-1142.
22. Longuet-Higgins, M.S., Cokelet, E., 1976. The deformation of steep surface waves on water: I. a numerical method of computation. Proceedings of Royal Society of London, series A350, 1-26.
23. Sakai, F., Takaeda, S. and Tamaki, T., 1989. 'Tuned liquid column damper - new type device for suppression of building vibrations', Proc. Int. Confi on Highrise Buidings, Nanjing, China, pp. 926-931
24. Sen, D., Pawlowski, J.S., Lever, J., Hinchey, M.J., 1990. Two-dimensional numerical modeling of large motions of floating bodies in waves. Proc. 5th Int. Conf. on Num. hip Hydro., 351-373.
25. Tanizawa, K., 1995. A nonlinear simulation method of 3-D body motions in waves (1st Report). Journal of the Society of Naval Architect Japan 178, 179-191.
26. Tanizawa, K., 1996a. Long time fully nonlinear simulation of floating body motions with artificial damping zone. Journal of the Society of Naval Architects of Japan 180, 311-319.
27. Tanizawa, K., 1996b. Nonlinear simulation of floating body motions in waves. Proc. 16th International Offshore and Polar Engineering Conference 3, 414-420.
28. Tanizawa, K., 2000 The state of the art on numerical wave tank. Proc. 4th Osaka Colloquium on Seakeeping Performance of Ships 2000, pp.95-114.
29. Thorpe, T.W., 1999. A Brief Review of Wave Energy. A report produced for The UK Department of Trade and Industry
30. Vinje, T., Brevig, P., 1981. Nonlinear ship motions. Proc. of the 3rd Int. Conf. on Num. Ship Hydro., pp. IV3-1-IV3-10.
31. Watkins, R. D., 1991. Tests on various arrangements of liquid column vibration absorbers. Research Report R639, School of Civil and Mining Engineering, University of Sydney
32. Yamamoto, T., Yoshida, A., Ijima, T., 1980. Dynamics of elastically moored floating objects. Applied Ocean Research 2(2), 85-92.
33. Yamamoto, T., 1981. Moored floating breakwater response to regular and irregular waves. Applied Ocean Research 3(1), 27-36.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code