Responsive image
博碩士論文 etd-0124113-021731 詳細資訊
Title page for etd-0124113-021731
論文名稱
Title
氧化鋅與摻銅氮化鎵的磊晶成長行為及顯微組織分析
Epitaxial growth and microstructure characterization of ZnO and Cu-alloyed GaN
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
289
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-07
繳交日期
Date of Submission
2013-01-24
關鍵字
Keywords
非極性氧化鋅、摻銅氮化鎵、化學氣相沉積、分子束磊晶、鋁酸鋰、缺陷分析、發光特性
defect, chemical vapor deposition, ZnO, Ga1-xCuxN, LiAlO2, molecular beam epitaxy
統計
Statistics
本論文已被瀏覽 5688 次,被下載 315
The thesis/dissertation has been browsed 5688 times, has been downloaded 315 times.
中文摘要
本研究透過顯微組織分析,探討在異質基板成長氧化鋅(ZnO)與摻銅氮化鎵(Ga1-xCuxN)磊晶的磊晶成長行為及其發光特性。論文第一部分探討以化學氣相沈積在鋁酸鋰(100)基板上成長氧化鋅磊晶的磊晶成長行為、缺陷特性與發光特性。第二部分探討以分子束磊晶法在鋁酸鋰(100)基板與氧化鋁(0001)基板成長氧化鋅磊晶的磊晶成長行為與缺陷特性。第三部分探討在氧化鋁(0001)基板以分子束磊晶法成長摻銅氮化鎵磊晶時銅的摻雜行為。
在化學氣相沈積氧化鋅磊晶的研究結果顯示,(0001)和(10-10)方位的氧化鋅磊晶均會在鋁酸鋰(100)基板上成長,其中(10-10)方位的氧化鋅磊晶與基板之晶格匹配較佳,在成核時具有較低的應變能,因此優先以島狀模式成核。(0001)方位的氧化鋅磊晶因與基板之晶格匹配較差,本應不易成核,但是後者卻可以利用在島狀(10-10)方位氧化鋅磊晶的間隙成核及快速側向成長,在不增加應變能的前提下降低(0001)方位磊晶的表面能,使其成核能障降低。快速側向成長的(0001)方位磊晶逐步覆蓋(10-10)方位磊晶,進而完全抑制了後者的成長。利用此一模式成長之(0001)方位磊晶,由於貫穿式差排均集中在磊晶中央與基板接觸的部分,因此在側向成長的部分有非常低的差排密度,以及擁有優異的發光特性。當成長溫度升高至650 oC時,(0001)方位磊晶的成核被有效抑制,因此可以在鋁酸鋰(100)基板上成長(10-10)方位的磊晶。磊晶成長的結果顯示,860 nm厚的氧化鋅磊晶其(10-10)繞射峰在ω方向(即rocking curve)的半高寬為468 arcsec,類似厚度的摻鎂氧化鋅(Zn0.8Mg0.2O,簡稱ZMO)磊晶其(10-10)繞射峰在rocking curve的半高寬為216 arcsec,均優於目前文獻中以異質磊晶成長的(10-10)方位氧化鋅磊晶。倒異空間圖譜分析顯示,其[1-210]方向的壓應變幾乎已完全鬆弛,而[0001]方向的壓應變則只略微鬆弛。穿透式電子顯微鏡觀察證實基板與磊晶間的錯配差排均為b=1/3[11-20]型態。此外,在氧化鋅磊晶中發現I1型基面疊差、貫穿式差排與反轉晶域晶界等缺陷,其中疊差與貫穿式差排的密度分別為1×105 cm-1和1×109 cm-2。ZMO磊晶的缺陷種類類似,但是未發現反轉晶域晶界,其疊差與貫穿式差排密度分別為2-3×104 cm-1和1×108 cm-2。因此後者的陰極射線激發放光分析所得到的近能隙發光峰強度是前者的十倍以上。此外,在低溫下由基面疊差造成的發光峰位置在3.324 eV,基面疊差發光峰在室溫被抑制而導致整體發光強度降低。ZMO磊晶因鎂原子分佈不均而造成近能隙發光峰寬化。
利用分子束磊晶法在鋁酸鋰(100)基板與氧化鋁(0001)基板上成長氧化鋅磊晶的研究,係以成長參數(包括溫度、鋅流量和氧分壓)以及緩衝層為探討對象。結果顯示在400 oC可成長出純粹(0001)方位磊晶,當溫度高於500oC時(0001)和(10-10)方位磊晶共存,但是(10-10)方位磊晶的體積分率隨溫度上升而增加。此外,利用熱蒸鍍緩衝層成長ZnO,可以有效抑制(0001)方位磊晶在鋁酸鋰基板上成核。光致螢光光譜分析顯示,高溫成長的(10-10)方位磊晶有較強的近能隙發光峰。穿透式電子顯微鏡的分析顯示,(0001)方位磊晶的成長模式與前述化學氣相沈積的結果相同。但是分子束磊晶成長之(0001)方位磊晶與鋁酸鋰基板存在兩組晶向關係: (0001)ZnO//(100)LAO,[1-210]ZnO-I //[001]LAO和[10-10]ZnO //[010]LAO和(0001)ZnO//(100)LAO,[10-10]ZnO-II//[001]LAO和[1-210]ZnO //[010]LAO。
利用分子束磊晶法在Al2O3基板上成長摻銅氮化鎵時,磊晶表面出現大量富銅島狀結構。透過穿透式電子顯微鏡觀察發現,富銅島狀結構主要是γ-Cu9Ga4相的磊晶,與GaN的晶向關係為:[111]Cu9Ga4//[1-210]GaN和(10-1)Cu9Ga4//(0001)GaN。其成因是在富鎵的成長條件下,表面生成大量鎵的液滴所致。因此雖然銅鎵流量比高達1.2-4.8 %,氮化鎵中的銅含量卻低於0.1 at.%。因此在調整成長條件(富氮)之後,結果證實可以避免Cu9Ga4的形成,並將氮化鎵中的銅含量提高至3.8 at.% (銅鎵流量比為1.1)。
Abstract
The present study aims at clarifying epitaxy mechanisms of zinc oxide (ZnO) and copper alloyed gallium nitride (Ga1-xCuxN) on substrates such as LiAlO2 and Al2O3, by characterizing the microstructures in detail. The thesis includes three parts. First, the orientation selection behavior, the defect characteristics and corresponding luminescence properties of the ZnO epilayers grown on the LiAlO2 (100) substrate by chemical vapor deposition are presented. The second part focuses on studying the epitaxial behavior of ZnO grown on LiAlO2 and Al2O3 substrates by molecular beam epitaxy. Finally, the Cu alloying in GaN by molecular beam epitaxy was studied.
Results indicated that both the (0001)- and (10-10)-oriented ZnO crystals could be grown on the LiAlO2 (100) substrate by chemical vapor deposition. The (10-10)-oriented ZnO possesses low lattice mismatches with the substrate and is nucleated in an island mode preferentially. The (0001)-oriented ZnO, on the contrary, has high lattice mismatch values and its nucleation should be difficult. However, transmission electron microscopy (TEM) observation showed that the (0001)-oriented ZnO crystals could be nucleated between the (10-10)-oriented islands and grew fast laterally to be attached to the later to reduce their surface energy. The lateral growth of the (0001)-oriented ZnO crystals also inhibited the growth of the (10-10)-oriented islands by blocking the adatom flux. Accordingly, the former covered the entire substrate surface gradually and grew into a continuous epilayer. The (0001)-oriented ZnO thus possessed good luminescence properties by creating defect-free zone in the overgrowth regions. Moreover, (10-10)-oriented ZnO and Zn0.8Mg0.2O epilayers were obtained by inhibiting the nucleation of the (0001)-oriented ZnO at a high growth temperature of 650 oC. Both the ZnO and Zn0.8Mg0.2O epilayers have full width at half maximum values for the (10-10) rocking curve of 468 and 216 arcsec, respectively. Reciprocal space map analyses indicated that the in-plane strain in the [1-210] direction was relaxed, but that in the [0001] direction was still sustained. The mismatch dislocations at the interface all have the same Burgers vector of b=1/3[11-20]. The major defects observed in ZnO were type I1 basal plane stacking faults of 1×105 cm-1, threading dislocations of 1×109 cm-2 and inversion domain boundaries (IDBs) of 1×104 cm-1 in densities. The defect density of the Zn0.8Mg0.2O epilayer was about one order of magnitude lower than that of ZnO (2-3×104 cm-1 for basal stacking faults and 1×108 cm-2 for threading dislocations). The low defect density yielded a superior luminescence property of which the near band emission of the Zn0.8Mg0.2O epilayers is more than ten times stronger than that of the ZnO one. An emission peak, induced by basal stacking fault, at 3.324 eV was found for the ZnO epilayer at low temperature. This peak was quenched at room temperature.
The main processing parameters discussed for the ZnO epilayers grown by molecular beam epitaxy includes growth temperature, Zn and O fluxes and the employment of buffer layer. Results showed that (0001)-oriented epilayers was obtained at a low growth temperature of 400 oC. At 500 oC or above, the films were composed of (10-10)- and (0001)-oriented crystals. The nucleation of the later could be inhibited by applying an ultrathin buffer layer produced by thermal evaporation. Two orientation relationships between the (0001)-oriented crystals and the LiAlO2 substrate were found as (0001)ZnO//(100)LAO, [1-210]ZnO-I// [001]LAO and [10-10]ZnO//[010]LAO, and (0001)ZnO//(100)LAO, [10-10]ZnO-II//[001]LAO and [1-210]ZnO//[010]LAO, respectively.
Cu-alloyed GaN epilayers were prepared by plasma assisted molecular beam epitaxy in a Ga-rich environment with Cu-to-Ga beam equivalent pressure ratios of 1.2 to 4.8 %. Islands enriched with Cu are found on all the GaN epitaxial layers. The islands are composed of a Cu9Ga4 intermetallic phase and GaN with the orientation relationship: [111]Cu9Ga4//[1-210]GaN and (10-1)Cu9Ga4// (0001)GaN. The formation mechanism of the islands is due to the formation of Ga(Cu) droplets on the surface. Wavelength dispersive X-ray spectroscopy analyses indicate that the 1.2 % and 4.8 % samples contain 0.07+-0.02 at.% Cu and 0.04+-0.03 at.% Cu, respectively. No islands were formed on the surface and only a small amount of the Cu9Ga4 precipitates are found in GaN as the film is prepared under a N-rich condition. As much as 3.8 at.% of Cu can be incorporated in GaN.
目次 Table of Contents
致謝..........................................................................................I
摘要..........................................................................................II
Abstract...................................................................................V
總目錄.....................................................................................VIII
表目錄.....................................................................................XIII
圖目錄.....................................................................................XIV
第一章 緒論 ..............................................................................1
第二章 文獻回顧與基礎理論...................................................3
2.1 化學氣相沉積法.................................................................3
2.1.1化學氣相沉積之反應熱力學...........................................4
2.1.2化學氣相沉積之反應動力學...........................................5
2.1.2.1氣體流量對反應速率的影響........................................5
2.1.2.2基板溫度對反應速率的影響........................................6
2.2分子束磊晶法......................................................................7
2.2.1分子束磊晶原理...............................................................7
2.2.2 分子束磊晶系統..............................................................8
2.2.3分子束磊晶成長參數......................................................10
2.2.4分子束磊晶的應用..........................................................10
2.3 成核與生長.........................................................................11
2.3.1同質成核...........................................................................11
2.3.2異質成核...........................................................................11
2.3.3 異質磊晶成長機制.........................................................12
2.3.3.1層狀成長.......................................................................12
2.3.3.2島狀成長.......................................................................13
2.3.3.3 混合成長......................................................................13
2.4 常用ZnO磊晶基板.............................................................14
2.4.1 磊晶與基板之晶格匹配.................................................14
2.4.2 臨界厚度.........................................................................15
2.4.3氧化鋁基板......................................................................16
2.4.4 鋁酸鋰基板.....................................................................16
2.4.5 鎵酸鋰基板.....................................................................17
2.5 ZnO磊晶.............................................................................18
2.5.1 ZnO磊晶的應用..............................................................19
2.5.2 極性ZnO磊晶..................................................................19
2.5.2.1 極性ZnO磊晶的性質...................................................19
2.5.2.2 以CVD法成長c-ZnO磊晶...........................................20
2.5.2.3 以MBE法在c面Al2O3基板成長c-ZnO磊晶..............21
2.5.2.4 以MBE法在非Al2O3基板上成長ZnO磊晶...............23
2.5.2.5 以PLD法成長c-ZnO磊晶............................................24
2.5.3 非極性ZnO磊晶..............................................................26
2.5.3.1 非極性ZnO磊晶的性質...............................................26
2.5.3.2 非極性ZnO磊晶成長...................................................26
2.6 摻鎂ZnO磊晶成長.............................................................29
2.7 ZnO磊晶中的缺陷.............................................................34
2.7.1 點缺陷.............................................................................34
2.7.2 線缺陷分類.....................................................................35
2.7.3 疊差與柱面晶界.............................................................36
2.7.4 ZnO磊晶之缺陷分析......................................................38
2.8 改善ZnO與GaN磊晶品質的策略.....................................42
2.8.1 磊晶於LAO基板的ZnO與GaN磊晶..............................42
2.8.2磊晶於LGO基板的ZnO與GaN磊晶...............................47
2.8.3 緩衝層效應.....................................................................49
2.8.4 側向磊晶成長.................................................................52
2.9光學特性.............................................................................53
2.10 GaN稀磁性半導體..........................................................56
第三章 實驗方法......................................................................61
3.1以CVD法在LAO (100)基板上成長ZnO薄膜...................61
3.1.1 基板準備.........................................................................61
3.1.2 磊晶成長參數.................................................................61
3.2以CVD法在LAO基板上成長m-ZnO與m-ZMO薄膜........62
3.3以MBE法在斜切c面Al2O3與LAO(100)基板上成長ZnO薄膜...............................................................................................62
3.3.1在c面Al2O3基板上成長ZnO薄膜..................................63
3.3.2 在LAO基板上成長ZnO薄膜..........................................63
3.4以MBE法在c面Al2O3基板上成長摻銅GaN薄膜............64
3.5 ZnO和GaN磊晶顯微分析.................................................65
3.5.1掃描式電子顯微鏡觀察與分析......................................65
3.5.2原子力顯微鏡觀察與分析..............................................65
3.5.3 X光繞射分析..................................................................65
3.5.4 顯微光致螢光光譜儀分析.............................................66
3.5.5陰極射線激發放光分析..................................................66
3.5.6 倒異空間圖譜分析.........................................................66
3.5.7掃描式歐傑電子能譜儀分析..........................................67
3.5.8 電子微探儀分析.............................................................67
3.5.9 穿透式電子顯微鏡分析與試片製備.............................67
3.5.9.1 正面電子顯微鏡試片製作..........................................68
3.5.9.2 截面電子顯微鏡試片製作..........................................68
3.5.9.3穿透式電子顯微鏡分析...............................................69
第四章 以CVD法在LAO基板成長ZnO薄膜..........................70
4.1 c-ZnO在LAO基板上的磊晶成長行為..............................70
4.2磊晶於LAO基板的m-ZnO與m-ZMO薄膜.........................74
4.2.1 m-ZnO與m-ZMO薄膜表面形貌與成份量測.................74
4.2.2 m-ZnO與m-ZMO磊晶中的缺陷分析.............................76
4.2.3 ZnO磊晶中的缺陷與發光特性之間的關係...................80
4.3 討論.....................................................................................84
4.3.1 ZnO磊晶在LAO基板上的應變能..................................84
4.3.2 c-ZnO在LAO基板上的磊晶成長機制...........................86
4.3.3成長參數對於c-ZnO與m-ZnO磊晶成長的影響............88
4.3.4 非極性ZnO磊晶的表面形貌與結晶性..........................89
4.3.5 m-ZnO在LAO基板上的應變鬆弛行為..........................91
4.3.6 c-ZnO與m-ZnO磊晶的缺陷分析...................................94
4.3.7缺陷對發光特性的影響..................................................96
第五章 以MBE法在c面Al2O3與LAO (100)基板上成長ZnO薄膜................................................................................................98
5.1 ZnO在c面Al2O3基板上的成長行為.................................98
5.1.1不同緩衝層對於c-ZnO成長的影響................................99
5.1.2 c-ZnO磊晶的光學性質.................................................101
5.1.3 c-ZnO磊晶的缺陷分析.................................................102
5.2 ZnO在LAO基板上的成長行為........................................103
5.2.1 ZnO在LAO基板上的磊晶成長機制.............................104
5.2.2熱蒸鍍緩衝層對ZnO磊晶成長的影響..........................105
5.2.3 ZnO磊晶的光學性質.....................................................106
5.3 成長參數對於ZnO磊晶成長的影響................................107
第六章 以MBE法在c面Al2O3基板上成長摻銅GaN薄膜...110
6.1 富鎵條件下成長的Ga1-xCuxN薄膜的表面形貌...........110
6.2 富銅的CuGa合金島狀物結構.........................................111
6.3 γ-Cu9Ga4島狀結構形成機制.........................................113
6.4 在富鎵條件下成長的Ga1-xCuxN薄膜的銅含量與磁性特性.............................................................................................115
6.5 新的Ga1-xCuxN薄膜成長策略.......................................117
第七章 結論.............................................................................118
第八章 參考文獻.....................................................................121
參考文獻 References
1.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., 28 (1989) L2112.
2.S. Nakamura, Jpn. J. Appl. Phys., 30 (1991) L1705.
3.S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys., 30 (1991) L1708.
4.W. -J. Liu, X. -L. Hu, J. -Y. Zhang, G. -E. Weng, X. -Q. Lv, H. -J. Huang, M. Chen, X. -M. Cai, L.-Y. Ying, B. -P. Zhang, Opt. Mater., 34 (2012) 1327.
5.A. Michiue, T. Miyoshi, T. Kozaki, T. Yanamoto, S. -I. Nagahama, T. Mukai, IEICE Trans. on Electronics, E92.C (2009) 194.
6.R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett., 99 (2011) 171113.
7.D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett., 70 (1997) 2230.
8.R. F. Service, Science, 276 (1997) 895.
9.D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials Today, 7 (2004) 34.
10.V. A. Coleman and C. Jagadish, in Zinc Oxide Bulk, Thin Films and Nanostructures,1st ed., C. Jagadish and S. Pearton, Editors, p. 1, Elsevier Limited, Oxford, UK (2006).
11.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki , Nature Mater., 4, (2005) 42.
12.U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin,S. -J. Cho, and H. Morkoc, J. Appl. Phys., 98 (2005) 041301.
13.R. Triboulet and J. Perriere, Prog. Cryst. Growth Charact. Mater., 47 (2003) 65.
14.S. -H. Lim, D. Shindo, H. -B. Kang, and K. Nakamura, J. Cryst. Growth, 225 (2001) 208.
15.J. -M. Chauveau, P. Vennegues, M. Laugt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys., 104 (2008) 073535.
16.J. W. Lee, S. K. Han, S. -K. Hong, J. Y. Lee, and T. Yao, J. Cryst. Growth, 310 (2008) 4102.
17.J. W. Lee, J. -H. Kim, S. K. Han, S. -K. Hong, J. Y. Lee, S. I. Hong, and T. Yao, J. Cryst. Growth, 312 (2010) 238.
18.M. M. C. Chou, L. Chang, H. -Y. Chung , T. -H. Huang, J. -J. Wu, and C. -W. Chen, J. Cryst. Growth, 308 (2007) 412.
19.黃鐙興,“磊晶於鋁酸鋰基板的氧化鋅薄膜成長機構研究與缺陷分析",國立中山大學材料科學研究所碩士論文,(2008)。
20.M. M. C. Chou, L. Chang, D. -R. Hang, C. L. Chen, D. -S. Chang, and C. -A. Li, Cryst. Growth Des., 9 (2009) 2073.
21.K. Sato and H. K. Yoshida, Semicond. Sci.Technol., 17 (2002) 367.
22.F. Matsukura, H. Ohnoa, and T. Dietl, in: Handbook of Magnetic Materials,v 14, Ed. K.H.J. Buschow, p. 1-87., Elsevier, Amsterdam (2002).
23.A. Bonanni, Semicond. Sci. Technol., 22 (2007) R41.
24.H. Ohno, Science, 281 (1998) 951.
25.B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck, J. Appl. Phys., 88 (2000) 1855.
26.G. Koblmueller, J. Brown, R. Averbeck, H. Riechert, P. Pongratz, and J. S. Speck, Appl. Phys. Lett., 86 (2005) 041908.
27.P. R. Ganz, C. Surgers, G. Fischer, and D. M. Schaadt, J. Phys. Conf. Series, 200 (2010) 062006.
28.P. R. Ganz, G. Fischer, C. Surgers, and D. M. Schaadt, J. Cryst. Growth, 323 (2011) 355.
29.H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, Noyes Publication, Norwich, New York, (1999).
30.羅吉宗,“薄膜科技與應用(修訂版)”,全華科技圖書股份有限公司出版,, (2005)。
31.C. E. Morosanu, “Thin Films by Chemical Vapor Deposition”, Elsevier, New York, (1990).
32.M. A. Herman and H. Sitter, “Molecular Beam Epitaxy Fundamentals and Current Status”, Second, Revised and Updated Edition, Springer-Verlag, Berlin, (1996).
33.Robin F. C. Farrow, “Molecular Beam Epitaxy Application to Key Materials”, Noyes Publication, U.S. A., (1995).
34.J. E. Ayers, “Heteroepitaxy of Semiconductors: THEORY, GROWTH, AND CHARACTERIZATION .”, CRC Press, New York, (2006).
35.陳正桓,“以自遮罩法成長氧化鋅磊晶",國立中山大學材料與光電科學學系碩士論文,(2009)。
36.G. Springholz, N. Frank, and G. Bauer, Thin Solid Films, 267 (1995) 15.
37.K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science: for electrical engineers and materials scientists ”, Macmillan, New York, (1992).
38.J. Zhao, L. Hu, Z. Wang, Z. Wang, H. Zhang, Y. Zhao, and X. Liang, J. Cryst. Growth, 280 (2005) 455.
39.T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, J. Appl. Phys., 92 (2002) 7157.
40.A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett., 75 (1999) 2635.
41.W. -Y. Shiao, C. -Y. Chi, S. -C. Chin, C. -F. Huang, T. -Y. Tang, Y. -C. Lu, Y. -L. Lin, L. Hong, F.-Y. Jen, C. C. Yanga, B. -P. Zhang, and Y. Segawa, J. Appl. Phys., 99 (2006) 054301.
42.T. Koyama and S. F. Chichibu, J. Appl. Phys., 95 (2004) 7856.
43.M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zeng, Z. X. Mei, J. F. Jia, H. Chen, Q. K. Xue, and Z. Zhang, Appl. Phys. Lett., 87 (2005) 202107.
44.K. Matsubara, P. Fons, A. Yamada, M. Watanabe, and S. Niki, Thin Solid Films, 347 (1999) 238.
45.G. H. Lee, Solid State Commun., 128 (2003) 351.
46.J. Zou, S. Zhou, C. Xia, Y. Hang, J. Xu, S. Gu, and R. Zhang, J. Cryst. Growth, 280 (2005) 185.
47.J. Zou, S. Zhou,C. Xia, X. Zhang, F. Su, G. Peng, X. Li, and J. Xu, Thin Solid Films, 496 (2006) 205.
48.J. Zou, S. Zhou, J. Xu, X. Zhang, X. Li, Z. Xie, P. Han, and R. Zhang, J. Mater. Sci., 41 (2006) 5937.
49.S. Liu, S. Zhou, Y. Wang, X. Zhang, X. Li, C. Xia, Y. Hang, and J. Xu, J. Cryst. Growth, 292 (2006) 125.
50.T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, J. Cryst. Growth, 310 (2008) 3144.
51.A. B. M. A. Ashrafi, B. -P. Zhang, N. T. Binh, K. Wakatsuki, and Y. Segaway, Jpn. J. Appl. Phys., 43 (2004) 1114.
52.J. W. Lee, S. K. Han, S. -K. Hong, and J. Y. Lee, Appl. Surf. Sci., 256 (2010) 1849.
53.I. P. Batra, J. Phys. C: Solid State Phys., 15 (1982) 5399.
54.M. Marezio, Acta Cryst., 19 (1965) 396.
55.Mitch M.C. Chou, H. C. Huang, D. S. Gan, and C. W.C. Hsu, J. Cryst. Growth, 291 (2006) 485.
56.M. Marezio, Acta Cryst., 18 (1965) 481.
57.M. A. L. Johnson, W. C. Hughes, W. H. Rowland, Jr., J. W. Cook, Jr., J. F. Schetzinaa, M. Leonard, H. S. Kong, J. A. Edmond, and J. Zavada, J.Cryst. Growth, 175/l 76 (1997) 72.
58.J. -Y. Yu, T. -H. Huang, L. Chang, Y. -H. Liao, M. M. C. Chou, and D. Gan, J. Electrochem. Soc., 158 (2011) H1166.
59.N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth, 130 (1993) 269.
60.X. -L. Guo, J. -H. Choi, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys.,40 (2001) L177.
61.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohyani, T. Makino, M. Sumiya., K. Ohtani, S. F. Chichibu, S. Yusaburou, S. Fuke,Y. Segwa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater., 4 (2005) 42.
62.F. Bernardini, V. Fiorentini and D. Vanderbilt, Phys. Rev. B, 56 (1997) R10024.
63.S. -H. Park and S. -L. Chuang, J. Appl. Phys., 87 (2000) 353.
64.P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature, 406 (2000) 865.
65.F. Bernardini and V. Fiorentini, Phys. Rev. B, 57 (1998) R9427.
66.M. Leroux, N. Grandjean, M. Laugt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, Phys. Rev. B, 57 (1998) R13371.
67.T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Physica E, 21 (2004) 671.
68.K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi, and H. Watanabe, J. Cryst. Growth, 214/215 (2000) 77.
69.G. -L. Zhao, B. -X. Lin, L. Hong, X. -D. Meng, and Z. -X. Zhu, Chin. Phys. Lett., 21 (2004) 1381.
70.K. Haga, T. Suzuki, Y. Kashiwaba, H. Watanabe, B. P.Zhang, and Y.Segawa, Thin Solid Films, 433 (2003) 131.
71.C. L. Wu, L. Chang , H. G. Chen, C. W. Lin, T. F. Chang, Y. C. Chao, and J. K. Yan, Thin Solid Films, 498 (2006) 137.
72.Y. Chen, D. M. Bagnall, H. -J. Koh, K. -T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys., 84 (1998) 3912.
73.I. Ohkubo, Y. Matsumoto, A. Ohtomo, T. Ohnishi, A. Tsukazaki, M. Lippmaa, H. Koinuma, and M. Kawasaki, Appl. Surf. Sci., 159-160 (2000) 514.
74.H. W. Liang, Y. M. Lu, D. Z. Shen, J. F. Yan, B. H. Li, J. Y. Zhang, Y. C. Liu, and X. W. Fan, J. Cryst. Growth, 278 (2005) 305.
75.Y. W. Heo, K. Ip, S. J. Pearton, D. P. Norton, and J. D. Budai, Appl. Surf. Sci., 252 (2006) 7442.
76.S. H. Park, J. H. Chang, T. Minegishi, J. S. Park, I. H. Im, M. Ito, T. Taishi, S. K. Hong, D. C. Oh, M. W. Cho, and T. Yao, J. Cryst. Growth, 311 (2009) 2167.
77.H. -J. Ko, T. Yao, Y. Chen, and S. -K. Hong, J. Appl. Phys., 92 (2002) 4354.
78.H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys., 42 (2003) 2241.
79.C. J. Pan, C. W. Tu, C. J. Tun, C. C. Lee, and G. C. Chi, J. Cryst. Growth, 305 (2007) 133.
80.A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga, H. J. Ko, J. Appl. Phys., 96 (2004) 3763.
81.T. Trautnitz, R. Sorgenfrei, and M. Fiederle, J. Cryst. Growth, 312 (2010) 624.
82.H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys., 42 (2003) L1002.
83.H. Xu, K. Ohtani, M. Yamao, and H. Ohno, Appl. Phys. Lett., 89 (2006) 071918.
84.H. J. Ko, Y. F. Chen, Z. Zhu, T. Hanada, and T. Yao, J. Cryst. Growth, 208 (2000) 389.
85.N. Kawamoto, M. Fujita, T. Tatsumi, and Y. Horikoshi, Jpn. J. Appl. Phys., 42 (2003) 7209.
86.F. Xiu, Z. Yang, D. Zhao, J. Liu, K. A. Alim, A. A. Balandin, M. E. Itkis, and R. C. Haddon, J. Cryst. Growth, 286 (2006) 61.
87.Z. -Y. Wang, L. -Z. Hu, J. Zhao, J. Sun, and Z. -J. Wang, Vacuum, 78 (2005) 53.
88.Y. Zhao, Y. Jiang and Y. Fang, J. Cryst. Growth, 307 (2007) 278.
89.S. J. Kang, Y. H. Joung, H. H. Shin, and Y. S. Yoon, J. Mater. Sci: Mater. Electron, 19 (2008) 1073.
90.J. -H. Kim, D. -H. Cho, W. Lee, B. -M. Moon, W. Bahng, S.-C. Kim, N. -K. Kim, and S. -M. Koo, J. Alloys Compd., 489 (2010) 179.
91.J. H. Jo, T. -B. Hur, J. S. Kwak, D. Y. Kwon, Y. -H. Hwang, and H. K. Kim, J. Korean Phys. Soc., 47 (2005) S300.
92.S. -J. Kang, H. -H. Shin and Y. -S. Yoon, J. Korean Phys. Soc., 51 (2007) 183.
93.Z. Y. Wang and L. H. Hu, Vacuum, 83 (2009) 906.
94.J. Zhang, B. Li, C. Xia, Q. Deng, J. Xu, G. Pei, F. Wu, Y. Wu, H. Shi, W. Xu, and Z. Yang, J. Cryst. Growth, 296 (2006) 186.
95.N. Jedrecy, S. Gallini, M. S. Simkin, and R. Pinchaux, Surf. Sci., 460 (2000) 136.
96.S. Liang, C. R. Gorla, N. Emanetoglu, Y. Lu, W. E. Mayo, and Y. Lu, J. Electron. Mater., 27 (1998) L72.
97.T. Moriyama and S. Fujita, Jpn. J. Appl. Phys., 44 (2005) 7919.
98.J. Zuniga-Pereza, V. Munoz-Sanjose, E. Palacios-Lidon and J. Colchero, Appl. Phys. Lett., 88 (2006) 261912.
99.J. -H. Kim, S. K. Han, S. I. Hong, S. -K. Hong, J. W. Lee, J. Y. Lee, J. -H. Song, J. S. Park, and T. Yao, J. Vac. Sci. Technol., B 27 (2009) 1625.
100.P. Ding, X. H. Pan, J. Y. Huang, H. P. He, B. Lu, H. H. Zhang , and Z. Z. Ye, J. Cryst. Growth, 331(2011)15.
101.E. Cagin, J. Yang, W. Wang, J. D. Phillips, S. K. Hong, J. W. Lee, and J. Y. Lee, Appl. Phys. Lett., 92 (2008) 233505.
102.R. Deng, B. Yao, Y. F. Li, B. H. Li, Z. Z. Zhang, H. F. Zhao, J. Y. Zhang, D. X. Zhao, D. Z. Shen, X. W. Fan, L. L. Yang, and Q. X. Zhao, J. Cryst. Growth, 311 (2009) 4398.
103.H. Zhou, H. -Q. Wang, X. -X. Liao, Y. Zhang, J. -C. Zheng, J. -O. Wang, E. Muhemmed, H. -J. Qian, K. Ibrahim, X. Chen, H. Zhan, and J. Kang, Nano. Research Letter., 7:184 (2012).
104.Y. -T. Ho, W. -L. Wang, C.-Y. Peng, W. -C. Chen, M. -H. Liang, J. -S. Tian, and L. Chang, Thin Solid Films, 518 (2010) 2988.
105.W. -L. Wang, C. -Y. Peng, Y. -T. Ho, and L. Chang, Thin Solid Films, 518 (2010) 2967.
106.J. Chen, H. Deng, H. Ji, and Y. Tian, J. Vac. Sci. Technol., A 29 (2011) 03A116.
107.S. K. Han, H. S. Lee, D. S. Lim, S. -K. Hong, N. Yoon, D. -C. Oh, B. J. Ahn, J. -H. Song, and T. Yao, J. Vac. Sci. Technol., A 29 (2011) 03A111.
108.J. Chen, H. Deng, N. Li, Y. Tian, and H. Ji, Mater. Lett., 65 (2011) 716.
109.P. Ding, X. Pan, J. Huang, B. Lu, H. Zhang, W. Chen, and Z. Ye, Mater. Lett., 71 (2012) 18.
110.M. M. C. Chou, D. -R. Hang, S. C. Wang, C. Chen, and C. -Y. Lee, J. Cryst. Growth, 312 (2010) 1170.
111.M. M.C. Chou, D. -R. Hang, C. Chen, S. C. Wang, and C. -Y. Lee, Mater. Chem. Phys.,125 (2011) 791.
112.Y. -C. Liang, J. Alloys Compd., 508 (2010) 158.
113.P. Pant, J. D. Budai, and J. Narayan, Acta Mater., 58 (2010) 1097.
114.R. D. Shannon, Acta Cryst., A32 (1976) 751.
115.A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett., 72 (1998) 2466.
116.A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, and O. W. Holland, Appl. Phys. Lett., 75 (1999) 3327.
117.A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, and M. Kawasaki, Appl. Phys. Lett., 75 (1999) 4088.
118.W. I. Park, G. -C.Yi and H. M. Jang, Appl. Phys. Lett., 79 (2001) 2022.
119.I. Takeuchi, W. Yang, K. -S. Chang, M. A. Aronova, T. Venkatesan, R. D. Vispute, and L. A. Bendersky, J. Appl. Phys., 94 (2003) 7336.
120.S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Schafer, Yu. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett. , 87 (2005) 091903.
121.T. Maemoto, N. Ichiba, S. Sasa, and M. Inoue, Thin Solid Films, 486 (2005) 174.
122.A. El-Shaer, A. Bakin, M. Al-Suleiman, S. Ivanov, A. C. Mofor, and A. Waag, Superlattices Microstruct., 42 (2007) 129.
123.S. C. Su, Y. M. Lu, Z. Z. Zhang, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, Appl. Surf. Sci., 254 (2008) 4886.
124.T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, J. Appl. Phys., 105 (2009) 023505.
125.C. -H. Ku, H. -H. Chiang, and J. -J. Wu, Chem. Phys. Lett., 404 (2005) 132.
126.H. Nishinaka, Y. Kamada, N. Kameyama, and S. Fujita, Phys. Status Solidi B, 247 (2010) 1460.
127.W. -H. Lin, M. M. C. Chou and J. -J. Wu, J. Electrochem. Soc., 158 (2011) D28.
128.S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, and T. Siegrist, Appl. Phys. Lett., 82 (2003) 742.
129.A. L. Yang, H. Y. Wei, X. L. Liu, H. P. Song, H. B. Fan, P. F. Zhang, G. L. Zheng, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, J. Phys. D: Appl. Phys., 41 (2008) 205416.
130.J. -M. Chauveau, J. Vives, J. Zuniga-Perez, M. Laugt, M. Teisseire, C. Deparis, C. Morhain, and B. Vinter, Appl. Phys. Lett., 93 (2008) 231911.
131.W. -H. Lin, J. -J. Wu, M. M. C. Chou, and L. Chang, Cryst. Growth Des., 9 (2009) 3301.
132.M. D. McCluskey and S. J. Jokela, J. Appl. Phys., 106 (2009) 071101.
133.S. B. Zhang, S. -H. Wei, and A. Zunger, Phys. Rev. B, 63 (2001) 075205.
134.H. L. Mosbacker, C. Zgrabik, M. J. Hetzer, A. Swain, D. C. Look, G. Cantwell, J. Zhang, J. J. Song, and L. J. Brillson, Appl. Phys. Lett., 91 (2007) 072102.
135.L. S. Vlasenko and G. D. Watkins, Phys. Rev. B, 72 (2005) 035203.
136.A. Janotti and C. G. Van de Walle, Phys. Rev. B, 76 (2007) 165202.
137.T. R. Paudel and W. R. L. Lambrecht, Phys. Rev. B, 77 (2008) 205202.
138.P. Erhart, K. Albe, and A. Klein, Phys. Rev. B, 73 (2006) 205203.
139.L. S. Vlasenko and G. D. Watkin, Phys. Rev. B, 71 (2005) 2125210.
140.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 79 (1996) 7983.
141.鮑忠興、劉思謙,“近代穿透式電子顯微鏡實務”,滄海書局,(2008)。
142.Ph. Komninou, J. Kioseoglou, G. P. Dimitrakopulos, Th. Kehagias, and Th. Karakostas, Phys. Stat. Sol. (a), 202 (2005) 2888.
143.J. E. Northrup, J. Neugebauer, and L. T. Romano, Phys. Rev. Lett., 77 (1996) 103.
144.L. T. Romano, J. E. Northrup, and M. A. O’Keefe, Appl. Phys. Lett., 69 (1996) 2394.
145.D. Cherns, W. T. Young, and F. A. Ponce, Mater. Sci. Eng., B50 (1997) 76.
146.L. T. Romano, J. E. Northrup, A. J. Ptak, and T. H. Myers, Appl. Phys. Lett., 77 (2000) 2479.
147.P. Ruterana, J. Alloys Compd., 401 (2005) 199.
148.H. Zhou, F. Phillipp, H. Schroder, and J. M. Bell, Appl. Surf. Sci., 252 (2005) 483.
149.H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, Appl. Phys. Lett., 79 (2001) 215.
150.H. K. Cho, J. Y. Lee, C. S. Kim, G. M. Yang, N. Sharma, and C. Humphreys, J. Cryst. Growth, 231 (2001) 466.
151.A. M. Sanchez, G. Nouet, P. Ruterana, F. J. Pacheco, S. I. Molina, and R. Garcia, Appl. Phys. Lett., 79 (2001) 3588.
152.J. Kioseoglou, G.P.Dimitrakopulos, H. M. Polatoglou, L. Lymperakis, G. Nouet, Ph. Komninou, Diamond Relat. Mater., 11 (2002) 905.
153.Y. Z. Liu, H. T. Yuan, Z. Q. Zeng, X. L. Du, X. D. Han, Q. K. Xue, and Z. Zhang, Philos. Mag. Lett., 87 (2007) 687.
154.X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. DenBaars, and J. S. Speck, J. Appl. Phys., 80 (1996) 3228.
155.Y. -L. Hu, S. Kraemer, P. T. Fini, J. S.Speck, J. Cryst. Growth, 331 (2011) 49.
156.F. Vigue, P. Vennegues, S. Vezian, M. Laugt, and J.-P. Faurie, Appl. Phys. Lett., 79 (2001) 194.
157.S. -H. Lim, D. Shindo, H. -B. Kang, and K. Nakamura, J. Cryst. Growth, 225 (2001) 208.
158.S. -H. Lim, D. Shindo, H. -B. Kang, and K. Nakamura, J. Vac. Sci. Technol., B19 (2001) 506.
159.S. -H. Lim, D. Shindo, H. -B. Kang, and K. Nakamura, J. Cryst. Growth, 225 (2001) 202.
160.S. -H. Lim, J. Washburn, and Z. Liliental-Weber, J. Vac. Sci. Technol., A 19 (2001) 2601.
161.W. -R. Liu, W. F. Hsieh, C. -H. Hsu, K. S. Liang, and F. S. -S. Chien, J. Cryst. Growth, 297 (2006) 294.
162.W. -R. Liu, W. F. Hsieh, C. -H. Hsu, K. S. Liang, F. S. -S. Chien, J. Appl. Cryst., 40 (2007) 924.
163.D. Cherns and Y. Sun, Appl. Phys. Lett., 92 (2008) 051909.
164.D. Gerthsen, D. Litvinov, Th. Gruber, C. Kirchner, and A. Waag, Appl. Phys. Lett., 81 (2002) 3972.
165.H. P. Sun, X. Q. Pan, X. L. Du, Z. X. Mei, Z. Q. Zeng, and Q. K. Xue, Appl. Phys. Lett., 85 (2004) 4385.
166.J. Narayan, K. Dovidenko, A. K. Sharma, and S. Oktyabrsky, J. Appl. Phys., 84 (1998) 2597.
167.M. -C. Jeong, S. -W. Lee, J. -M. Seo, and J. -M. Myoung, Nanotechnology , 18 (2007) 305701.
168.S. -H. Lim and D. Shindo, J. Appl. Phys., 88 (2000) 5107.
169.S. -H. Lim and D. Shindo, J. Electron Microsc., 51 (2002) S165.
170.P. Vennegues, J. M. Chauveau, M. Korytov, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys., 103 (2008) 083525.
171.S. K. Han, J. -H. Kim, S. -K. Hong, J. -H. Song, J. -H. Song, J. W. Lee, J.Y. Lee, S. I. Hong, and T.Yao, J. Cryst. Growth, 312 (2010) 2196.
172.S. K. Han, S. -K. Hong, J. W. Lee, J. G. Kim, M. Jeong, J. Y. Lee, S. I. Hong, J. S. Park, Y. E. Ihm, J. -S. Ha, and T. Yao, Thin Solid Films, 519 (2011) 6394.
173.W. -L.Wang, C. -Y.Peng, Y. -T. Ho, S. -C. Chuang, and L. Chang, J. Vac. Sci. Technol., A 29 (2011) 031001.
174.J. Narayan and B. C. Larson, J. Appl. Phys., 93 (2003) 278.
175.S. Zhou, J. Zhou, T. Huang, S. Li, J. Zou, J. Wang, X. Zhang, X. Li, and R. Zhang, J. Cryst.Growth, 303 (2007) 510.
176.H. Lin, S. Zhou, T. Huang, H. Teng, X. Liu, S. Gu, S. Zhu, Z. Xie, P. Han, and R. Zhang, J. Alloys Compd, 467 (2009) L8.
177.H. Lin, S. Zhou, H. Teng, and J. Wang, J. Cryst. Growth, 311 (2009) 456.
178.呂健賓,“奈米緩衝層與成長參數對鋁酸鋰基板以化學氣相沈積氧化鋅磊晶的影響 ",國立中山大學材料與光電科學學系碩士論文,(2011)。
179.R. R. Vanfleet, J. A. Simmons, H. P. Maruska, D. W. Hill, M. M. C. Chou, and B. H. Chai, Appl. Phys. Lett., 83 (2003) 1139.
180.Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, and K. H. Ploog, J. Appl. Phys., 92 (2002) 5714.
181.Y. J. Sun, O. Brandt, and K. H. Ploog, J. Vac. Sci. Technol., B 21 (2003) 1350.
182.J. W. Gerlach, A. Hofmann, T. Hoche, and B. Rauschenbach, Nucl. Instr. and Meth. in Phys. Res. B , 257 (2007) 315.
183.C. Liu, Z. Xie, P. Han, B. Liu, L. Li, J. Zou, S. Zhou, L. H. Bai, Z. H. Chen, R. Zhang, and Y. Zheng, J. Cryst. Growth, 298 (2007) 228.
184.J. Zou and W. Xiang, J. Alloys Compd., 484 (2009) 622.
185.M. M. C.Chou, L. Chang, C. Chen, W. -F.Yang, C.-A. Li, and J. -J. Wu, J. Cryst. Growth, 311 (2009) 448.
186.M. M. C. Chou, D. -R. Hang, L. Chang, C. Chen, W. -F.Yang, C. -A. Li, and J. -J. Wu, J. Appl. Phys., 107 (2010) 013502.
187.M. M. C. Chou, C. Chen, J. -W. Lu, C. -A. Li, C. W. C. Hsu, and C. Liu, J. Cryst. Growth, 316 (2011) 6.
188.Y. Tazoh, T. Ishii, and S. Miyazawa, Jpn. J. Appl. Phys., 36 (1997) L746.
189.P. Kung, A. Saxler, X. Zhang, D. Walker, R. Lavado, and M. Razeghi, Appl. Phys. Lett., 69 (1996) 2116.
190.M. Okada, Y. Higaki, T. Yanagi, Y. Shimizu, Y. Nanishi, T. Ishii, and S. Miyazawa, J. Cryst. Growth, 189/190 (1998) 213.
191.S. Duan, X. Teng, P. Han, and D. -C. Lu, J. Cryst. Growth, 195 (1998) 304.
192.R. Schuber, M. M. C. Chou and D. M. Schaadt, Thin Solid Films, 518 (2010) 6773.
193.R. Schuber, Y. L. Chen, C. H. Shih, T. H. Huang, P.Vincze, I. Lo, L. W. Chang, Th. Schimmel, M. M. C.Chou, and D.M.Schaadt, J. Cryst. Growth, 323 (2011) 76.
194.C. -H. Shih, T. -H. Huang, R. Schuber, Y. -L. Chen, L. Chang, I. Lo, M. M. C. Chou, and D. M. Schaadt, Nanoscale Res. Lett., 6 (2011) 425.
195.G. Li, S. Mu and S. -J. Shih, Mater. Sci. Eng. B, 170 (2010) 9.
196.M. M. C. Chou, C. Chen, D. R. Hang, and W. -T. Yang, Thin Solid Films, 519 (2011) 5066.
197.M. M. C. Chou, D. -R. Hang, C. Chen, and Y. -H. Liao, Thin Solid Films, 519 (2011) 3627.
198.R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, and K. A. Jones, Appl. Phys. Lett., 73 (1998) 348.
199.S. -K. Hong, H. -J. Ko, Y. Chen, and T. Yao, J. Cryst. Growth, 209 (2000) 537.
200.Y. Wang, X. L. Du, Z. X. Mei, Z. Q. Zeng, Q. Y. Xu, Q. K. Xue, and Z. Zhang, J. Cryst. Growth, 273 (2004) 100.
201.Y. F. Chen, H. -J. Ko, S. -K. Hong, and T. Yao, Appl. Phys. Lett., 76 (2000) 559.
202.A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, Superlattices Microstruct., 38 (2005) 265.
203.B. Pecz, A. El-Shaer, A. Bakin, A. -C. Mofor, A. Waag, and J. Stoemenos, J. Appl. Phys., 100 (2006) 103506.
204.A. Bakin, J. Kioseoglou, B. Pecz, A. El-Shaer, A. -C. Mofor, J. Stoemenos, and A. Waag, J. Cryst. Growth, 308 (2007) 314.
205.A. El-Shaer, A. Bakin, A. C. Mofor, J. Stoimenos, B. Pecz, and A. Waag, Superlattices Microstruct., 42 (2007) 158.
206.A. Setiawan, H. J. Ko and T. Yao, Mater. Sci. Semicond. Process., 6 (2003) 371.
207.A. Setiawan, H. J. Ko, S. K. Hong, Y. Chen, and T. Yao, Thin Solid Films, 445 (2003) 213.
208.J. G. Kim, S. K. Han, S. M. Yang, S. -K. Hong, J. W. Lee, J. Y. Lee, J. -H. Song, Y. E. Ihm, D. Kim, J. S. Park, H. -J. Lee, and T. Yao, Thin Solid Films, 519 (2010) 223.
209.S. -Y. Ting, P.-J. Chen, H. -C. Wang, C. -H. Liao, W.-M. Chang, Y. -P. Hsieh, and C. C. Yang, J. Nanomaterials., 2012 (2012) 929278.
210.Y. -S. Jung, Y. -S. No, J. -S. Kim, and W. -K. Choi, J. Cryst.Growth, 267 (2004) 85.
211.Y. -S. Jung, O. Kononenko, J. -S. Kim, and W. -K. Choi, J. Cryst. Growth, 274 (2005) 418.
212.J. S. Park, S. K. Hong, T. Minegishi, I. H. Im, S. H. Park, T. Hanada, J. H. Chang, M. W. Cho, and T. Yao, Appl. Surf. Sci., 254 (2008) 7786.
213.J. S. Park, S. K. Hong, I. H. Im, J. S. Ha, H. J. Lee, S. H. Park, J. H. Chang, M. W. Cho, and T.Yao, J. Cryst. Growth, 311 (2009) 2163.
214.F. Xiu, Z. Yang, D. Zhao, J. Liu, K. A. Alim, A. A. Balandin, M. E. Itkis, and R. C. Haddon, J. Cryst. Growth, 286 (2006) 61.
215.C. Y. Zhao, Z. R. Liu, B. Sun, J.Tang, P. S.Xu, and J. C. Xie, Physica E, 41 (2009) 479.
216.J. -H. Kim, S. K. Han, S. -K. Hong, J. W. Lee, J. Y. Lee, J. -H. Song, S. I. Hong, and T. Yao, J. Cryst. Growth, 312 (2010) 2190.
217.B. H. Lin, W. R. Liu, S. Yang, C. C. Kuo, C. -H. Hsu, W. F. Hsieh, W. C. Lee, Y. J. Lee, M. Hong, and J. Kwo, Cryst. Growth Des., 11 (2011) 2846.
218.W. -R. Liu, B. H. Lin, S. Yang, C. C. Kuo, Y. -H. Li, C. -H. Hsu, W. F. Hsieh, W. C. Lee, M. Hong, and J. Kwo, Cryst. Eng. Comm., 14 (2012)1665.
219.R. W. McClelland, C. O. Bozler, and J. C. C. Fan, Appl. Phys. Lett., 37 (1980) 560.
220.S. Nakamura, M. Senoh, S. -I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Jpn. J. Appl. Phys., 36 (1997) L1568.
221.D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, Appl. Phys. Lett., 89 (2006) 161105.
222.S. -N. Lee, J. Kim and H. Kim, J. Electrochem. Soc., 158 (2011) H994.
223.B. A. Haskell, F. Wu, M. D. Craven, S. Matsuda, P. T. Fini, T. Fujii, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett., 83 (2003) 644.
224.Y. A. R. Dasilva, T. Zhu, D. Martin, N. Grandjean, U. Jahn, and P. Stadelmann, J. Cryst. Growth, 327 (2011) 6.
225.X. Ni, U. Ozgur, Y. Fu, N. Biyikli, J. Xie, A. A. Baski, H. Morkoc, and Z. Liliental-Weber, Appl. Phys. Lett., 89 (2006) 262105.
226.H. Miyake, A. Motogaito and K. Hiramatsu, Jpn. J. Appl. Phys., 38 (1999) L1000.
227.W. Zhou, D. Ren and P. D. Dapkus, J. Cryst. Growth, 283 (2005) 31.
228.D. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, Adv. Funct. Mater., 16 (2006) 799.
229.Y. B. Zhang, G. K. L. Goh and S. Li, Thin Solid Films, 518 (2010) e104.
230.C. -C. Pan, C. -H. Hsieh, C. -W. Lin, and J. -I. Chyi, J. Appl. Phys., 102 (2007) 084503.
231.Y. S. Jung, W. K. Choi, O. V. Kononenko, and G. N. Panin, J. Appl. Phys., 99 (2006) 013502.
232.Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Appl. Phys. , 98 (2005) 073502.
233.S. A. Studenikin and M. Cocivera, J. Appl. Phys., 91 (2002) 5060.
234.M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, J. Appl. Phys., 103 (2008) 103514.
235.H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys., 95 (2004) 1246.
236.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, and J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 79 (1996) 7983.
237.W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li, and J. Xu, Nucl. Instr. and Meth. in Phys. Res. B, 169 (2000) 59.
238.X. J. Wang, I. A. Buyanova, W. M. Chen, C. J. Pan, and C. W. Tu, Physica B, 401-402 (2007) 413.
239.S. P. Wang, C.X. Shan, B. Yao, B. H. Li, J. Y. Zhan, D. X. Zhao, D. Z. Shen, and X. W. Fan, Appl. Surf. Sci., 255 (2009) 4913.
240.X. Yang, G. Du, X. Wang, J. Wang, B. Liu, Y. Zhang, D. Liu, D. Liu, H. C. Ong, and S. Yang, J. Cryst. Growth, 252 (2003) 275.
241.T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, and Y. Horikoshi, Jpn. J. Appl. Phys., 43 (2004) 2602.
242.F. K. Shan, G. X. Liu, W. J. Lee, and B. C. Shin, J. Appl. Phys., 101 (2007) 053106.
243.A. L. Yang, H. P. Song, D. C. Liang, H. Y. Wei, X. L. Liu, P. Jin, X. B. Qin, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, Appl. Phys. Lett., 96 (2010) 151904.
244.C. Thiandoume, A. Lusson, P. Galtier, and V. Sallet, J. Cryst. Growth, 312 (2010) 1529.
245.曾鈞隆,“利用分子束磊晶法成長摻鎂氧化鋅磊晶之研究 ",國立中山大學材料與光電科學學系碩士論文,(2011)。
246.M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, R. Sauer, and K. Thonke, Physica B, 401-402 (2007) 362.
247.B. Sieber, A. Addad, S. Szunerits, and R. Boukherroub, J. Phys. Chem. Lett., 1 (2010) 3033.
248.S. Tomiya, E. Morita, M. Ukita, H. Okuyama, S. Itoh, K. Nakano, and A. Ishibashi, Appl. Phys. Lett., 66 (1995) 1208.
249.T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, Appl. Phys. Lett., 76 (2000) 3421.
250.M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, Phys. Rev. B , 77 (2008) 125215.
251.K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, and R. Sauer, Microelectron. J., 40 (2009) 210.
252.B. Bastek, F. Bertram, J. Christen, T. Wernicke, M. Weyers, and M. Kneissl, Appl. Phys. Lett., 92 (2008) 212111.
253.C. Netzel, T. Wernicke, U. Zeimer, F. Brunner, M. Weyers, and M. Kneissl, J. Cryst. Growth, 310 (2008) 8.
254.R. R. Galazka, S. Nagata and P. H. Keesom, Phys. Rev. B, 22 (1980) 3344.
255.E. D. Isaacs, D. Heiman, J. J. Zayhowski, R. N. Bicknell, and J. F. Schetzina, Appl. Phys. Lett., 48 (1986) 275.
256.M. Smith, A. Dissanayake and H. X. Jiang, Phys. Rev. B, 49 (1994) 4514.
257.C. D. Poweleit, L. M. Smith and B. T. Jonker, Phys. Rev. B, 50 (1994) 18662.
258.T. Baron, S. Tatarenko, K. Saminadayar, N. Magnea, and J. Fontenille, Appl. Phys. Lett., 65 (1994) 1284.
259.A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, and Y. Merle d’Aubigne, Phys. Rev. Lett., 79 (1997) 511.
260.D. Ferrand, J. Cibert, C. Bourgognon, S. Tatarenko, A. Wasiela, G. Fishman, A. Bonanni, H. Sitter, S. KolesHnik, J. Jaroszynski, A. Barcz, and T. Dietl, J. Cryst. Growth, 214/215 (2000) 387.
261.D. Ferrand, C. Bourgognon, J. Cibert, A. Wasiela, S. Tatarenko,Y. Merled' Aubigne, A. Bonnani, D. Stifter, H. Sitter, L. V. Khoi, S. Kolesnik, J. Jaroszynski, M. Sawicki, T. Andrearczyk, and T. Dietl, Physica B, 284-288 (2000) 1177.
262.H. Saito, W. Zaets, S. Yamagata, Y. Suzuki, and K. Ando, J. Appl. Phys., 91 (2002) 8085.
263.H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett., 69 (1996) 363.
264.F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B, 57 (1998) R2037.
265.T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287 (2000) 1019.
266.K. Sato and H. K. Yoshida, Jpn. J. Appl. Phys., 40 (2001) L485.
267.M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A. Parker, J. C. Roberts, and S. M. Bedair, Appl. Phys. Lett., 79 (2001) 3473.
268.N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, S. J. Pearton, S. N. G. Chu, and R. G. Wilson, Appl. Phys. Lett., 78 (2001) 3475.
269.S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto, and H. Hori, J. Cryst. Growth, 237-239 (2002) 1358.
270.M. Zajac, J. Gosk, M. Kaminska, A. Twardowski, T. Szyszko and S. Podsiadło, Appl. Phys. Lett., 79 (2001) 2432.
271.G. M. Dalpian and S. -H. Wei, J. Appl. Phys., 98 (2005) 083905.
272.G. M. Dalpian, S. -H. Wei, X. G. Gong, A. J. R. da Silva, and A. Fazzio, Solid State Commun., 138 (2006) 353.
273.E. Sarigiannidou, F. Wilhelm, E. Monroy, R. M. Galera, E. Bellet-Amalric, A. Rogalev, J. Goulon, J. Cibert, and H. Mariette, Phys. Rev. B, 74 (2006) 041306.
274.T. Sasaki, S. Sonoda, Y. Yamamoto, K. -I. Suga, S. Shimizu, K. Kindo, and H. Hori, J. Appl. Phys., 91 (2002) 7911.
275.S. Dhar, O. Brandt, A. Trampert, L. Daweritz, K. J. Friedland, K. H. Ploog, J. Keller, B. Beschoten, and G. Guntherodt, Appl. Phys. Lett., 82 (2003) 2077.
276.G. P. Das, B. K. Rao and P. Jena, Phys. Rev. B, 68 (2003) 035207.
277.R. Giraud, S. Kuroda, S. Marcet, E. Bellet-Amalric, X. Biquard, B. Barbara, D. Fruchart, D. Ferrand, J. Cibert, and H. Mariette, Europhys. Lett., 65 (2004) 553.
278.L. Sun, F. Yan, H. Gao, H. Zhang, Y. Zeng, G. Wang, and J. Li, J. Phys. D: Appl. Phys., 41 (2008) 165004.
279.L. Sun, F. Yan, J. Wang, Y. Zeng, G. Wang, and J. Li, Phys. Status Solidi A, 206 (2009) 91.
280.D. Xu, Y. Zhang,Y. Zhang, P. Li, and C. Wang, J. Magn. Magn. Mater., 321 (2009) 2442.
281.X. Y. Cui, J. E. Medvedeva, B. Delley, A. J. Freeman, N. Newman, and C. Stampfl, Phys. Rev. Lett., 95 (2005) 256404.
282.K. Yamaguchi, H. Tomioka, T. Yui, T. Suemasu, K. Ando, R. Yoshizaki, and F. Hasegawa, Jpn. J. Appl. Phys., 44 (2005) 6510.
283.S. Kimura, S. Subashchandran, Y. K. Zhou, M. S. Kim, S. Kobayashi, S. Emura, M. Ishimaru, Y. Hirotsu, S. Hasegawa, and H. Asahi, Jpn. J. Appl. Phys., 45 (2006) 76.
284.S. Kobayashi, S. Shanthi, S. Kimura, Y. K. Zhou, S. Emura, S. Hasegawa, and H. Asahi, J. Cryst. Growth, 308 (2007) 58.
285.A. Bonanni, M. Kiecana, C. Simbrunner, T. Li, M. Sawicki, M. Wegscheider, M. Quast, H. Przybylińska, A. Navarro-Quezada, R. Jakieła, A. Wolos, W. Jantsch, and T. Dietl, Phys. Rev. B, 75 (2007) 125210.
286.T. Li, C. Simbrunner, A. Navarro-Quezada, M. Wegscheider, M. Quast, D. Litvinov, D. Gerthsen, and A. Bonanni, J. Cryst. Growth, 310 (2008) 3294.
287.A. Bonanni, A. Navarro-Quezada, Tian Li, M. Wegscheider, Z. Matej, V. Holy, R. T. Lechner, G. Bauer, M. Rovezzi, F. D’Acapito, M. Kiecana, M. Sawicki, and T. Dietl, Phys. Rev. Lett., 101 (2008) 135502.
288.R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, and Q. Y. Wu, Appl. Phys. Lett., 89 (2006) 062505.
289.B. Seipel, R. Erni, A. Gupta, C. Li, F.J. Owens, K.V. Rao, N.D. Browning, and P. Moeck, J. Mater. Res., 22 (2007)1396.
290.J. -H. Lee, I. -H. Choi, S. Shin, S. Lee, J. Lee, C. Whang, S. -C. Lee, K. -R. Lee, J. -H. Baek, and K. H. Chae, J. Song, Appl. Phys. Lett., 90 (2007) 032504.
291.L. Sun, F. Yan, H. Zhang, J. Wang, Y. Zeng, G. Wang, and J. Li, J. Appl. Phys., 106 (2009) 113921.
292.X. L. Yang, Z. T. Chen, C. D. Wang, Y. Zhang, X. D. Pei, Z. J. Yang, G. Y. Zhang, Z. B. Ding, K. Wang, and S. D. Yao, J. Appl. Phys., 105 (2009) 053910.
293.L. Sun, F. Yan, H. Zhang, J. Wang, Y. Zeng, G. Wang, and J. Li, Appl. Surf. Sci., 256 (2009) 1361.
294.L. Sun, F. Yan, H. Zhang, J. Wang, Y. Zeng, G. Wang, and J. Li, Mater. Lett., 63 (2009) 2574.
295.A. L. Rosa and R. Ahuja, Appl. Phys. Lett., 91 (2007) 232109.
296.H. -K. Seong, J.-Y. Kim, J. -J. Kim, S. -C. Lee, S. -R. Kim, U. Kim, T. -E. Park, and H. -J. Choi, Nano Lett., 7 (2007) 3366.
297.H. J. Xiang and S. -H. Wei, Nano Lett., 8 (2008) 1825.
298.P. -W. Wang, X. -J. Zhang, B. -Q. Wang, X. -Z. Zhang, and D. -P. Yu, Chin. Phys. Lett., 25 (2008) 3040.
299.B. -S. Kang, K. -S. Kim, H. -J. Kang, and S. -C. Yu, J. Korean Phys. Soc., 57 (2010) 1925.
300.Y. Liu, Z. Gai, M. Weinert, and L. Li, Phys. Rev. B, 85 (2012) 075207.
301.R. R. Vanfleet, J. A. Simmons, D. W. Hill, M. M. C. Chou, and B. H. Chai, J. Appl. Phys., 104 (2008) 093530.
302.H. J. Byker, I. Elierer, N. Elierer, and R. A. Howald, J. Phys. Chem., 83 (1979) 2349.
303.A. K. Fischer, Inorg. Chem., 16 (1977) 974.
304.A. P. de Kroon, G. W. Schfer, and F. Aldinger, J Alloys Compd., 314 (2001) 147.
305.A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, Phys. Rev. Lett., 86 (2001) 3811.
306.B. Meyer and D. Marx, Phys. Rev. B, 67 (2003) 035403.
307.T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, N. Sakagami, J. Cryst. Growth, 214/215 (2000) 72.
308.R. A. Laudise and A. A. Ballman, J. Phys. Chem., 64 (1960) 688.
309.J. B. Baxter, F. Wu, and E. S. Aydil, Appl. Phys. Lett., 83 (2003) 3797.
310.D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett., 81 (2002) 1830.
311.G. Salviati, M. Albrecht, C. Zanotti-Fregonara, N. Armani, M. Mayer, Y. Shreter, M. Guzzi, Y. V. Melnik, K. Vassilevski, V. A. Dmitriev, and H. P. Strunk, Phys. Stat. Sol. (a), 171 (1999) 325.
312.M. Albrecht, J. L. Weyher, B. Lucznik, I. Grzegory, and S. Porowski, Appl. Phys. Lett., 92 (2008) 231909.
313.S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett., 70 (1997) 420.
314.T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, Jpn. J. Appl. Phys., 37 ( 1998) L398.
315.H. Matsui, N. Hasuike, H. Harima, and H. Tabata, J. Appl. Phys., 104 (2008) 094309.
316.T. Paskova, Phys. Stat. Sol. (b), 245 (2008) 1011.
317.A. Kaushal and D. Kaur, Sol. Energy Mater. Sol. Cells, 93 (2009) 193.
318.J. Shen, S. Johnston, S. Shang, T. Anderson, J. Cryst. Growth, 240 (2002) 6.
319.T. Y. Liu, Transmission electron microscopy studies of GaN/γ-LiAlO2 heterostructures, Ph.D Dissertation, Humboldt-Universitat zu Berlin Germany, (2004).
320.J. D. Ye, K. W. Teoh, X. W. Sun, G. Q. Lo, D. L. Kwong, H. Zhao, S. L. Gu, R. Zhang, Y. D. Zheng, S. A. Oh, X. H. Zhang, and S. Tripathy, Appl. Phys. Lett., 91 (2007) 091901.
321.R. Thierry, G. Perillat-Merceroz, P. H. Jouneau, P. Ferret, and G. Feuillet, Nanotechnology, 23 (2012) 085705.
322.K. Koikea, K. Hama, I. Nakashima, G. -Y. Takadaa, K. -I.Ogata, S. Sasa, M. Inoue, M. Yano, J. Cryst. Growth, 278 (2005) 288.
323.S. K. Han, J. G. Kim, J. -H. Kim, S. -K. Hong, J. W. Lee, J. Y. Lee, J. –H. Song, Y. S. Nam, S. -K. Chang, and T. Yao, J. Vac. Sci. Technol., B 27 (2009) 1635.
324.M. -H. Liang, Y. -T. Ho, W. -L. Wang, C. -Y. Peng, and L. Chang, J. Cryst. Growth, 310 (2008) 1847.
325.C. -Y. Peng, J. -S. Tian, W. -L. Wang, Y. -T. Ho, S. -C. Chuang, Y. -H. Chu, and L. Chang, J. Vac. Sci. Technol., A 29 (2011) 03A110.
326.T. Paskova, R. Kroeger, S. Figge, D. Hommel, V. Darakchieva, B. Monemar, E. Preble, A. Hanser, N. M. Williams, and M. Tutor, Appl. Phys. Lett., 89 (2006) 051914.
327.H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, Appl. Phys. Lett., 84 (2004) 499.
328.J. H. Van Der Merwe, J. Appl. Phys., 34 (1963) 123.
329.J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth, 27 (1974) 118.
330.A. Fischer, H. Kiihne, and H. Richter, Phys. Rev. Lett., 73 (1994) 2712.
331.J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, J. Vac. Sci. Technol. A, 2 (1984) 436.
332.R. People and J. C. Bean, Appl. Phys. Lett., 47 (1985) 322.
333.A. Bere and A. Serra, Phys. Rev. B, 65 (2002) 205323.
334.H. Matsuia, H. Tabata, N. Hasuike, and H. Harima, J. Appl. Phys., 99 (2006) 024902.
335.G. Saraf, Y. Lu, and T. Siegrist, Appl. Phys. Lett., 93 (2008) 041903.
336.P. Pant, J. D. Budai, R. Aggarwal, R. J. Narayan, and J. Narayan, Acta Mater., 57 (2009) 4426.
337.J. -M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Morhain, C. Deparis,
and B. Vinter, J. Appl. Phys., 109 (2011) 102420.
338.G. Saraf, Y. Lu, and T. Siegrist, Appl. Phys. Lett., 93 (2008) 151907.
339.C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback , and H. Shen, J. Appl. Phys., 85 (1999) 2595.
340.F. Hamdani, A. Botchkarev, W. Kim, H. Morkoc, M. Yeadon, J. M. Gibson, S. -C. Y. Tsen, D. J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel, and P. Hemenger, Appl. Phys. Lett., 70 (1997) 467.
341.H. Lin, S. Zhou, H. Teng, X. Hou, T. Jia, S. Gu, S. Zhu, Z. Xie, P. Han, R. Zhang, K. Xu, Appl. Surf. Sci., 255 (2009) 9146.
342.Y. S. Nam, S. W. Lee, K. S. Baek, S. K. Chang, J. -H. Song, J. -H. Song, S. K. Han, S. -K. Hong, and T. Yao, Appl. Phys. Lett., 92 (2008) 201907.
343.X. Han, Y. Gao, J. Dai, C. Yu, Z. Wu, C. Chen, and G. Fang, J. Phys. D: Appl. Phys., 43 (2010) 145102.
344.K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, J. Cryst. Growth, 214/215 (2000) 92.
345.陳彥名,“以分子束磊晶法於鋁酸鋰基板成長非極性氧化鋅磊晶之研究 ",國立中山大學材料與光電科學學系碩士論文,(2012)。
346.R. Stokhuyzen, J. K. Brandon, P. C. Chieh, and W. B. Pearson, Acta Cryst., B30 (1974) 2910.
347.P. R. Subramanian and D. E. Laughlin, in Binary Alloy Phase Diagrams, Vol. 2, 2nd ed., T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kapeprzak, Editors, ASM international, Materials Park, OH (1990).
348.Y. Zhang, J.-B. Li, J. K. Liang, Q. Zhang, B. J. Sun, Y. G. Xiao, and G. H. Rao, J. Alloys Compd, 438 (2007) 158.
349.B. C. Anusionwu and O. K. Echendu, Phys. Chem. Liq., 48 (2010) 127.
350.J. Lee, W. Shimoda, and T. Tanaka, Meas. Sci. Technol., 16 (2005) 438.
351.R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4 (1964) 89.
352.K. W. Kolasinski, Curr. Opin. Solid State Mater. Sci., 10 (2006) 182.
353.B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgstrom, K. Deppert, and L. Samuelson, Adv. Mater., 21 (2009) 153.
354.P. G. Shewmon, Transformations in Metals, McGraw-Hill, New York (1969).
355.O. Brandt, H. Yang, and K. H. Ploog, Phys. Rev. B, 54 (1996) 4432.
356.T. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett., 73 (1998) 487.
357.J. I. Goldstein, A. D. Romig, Jr., D. A. Newbury, C. E. Lyman, P. Echlin, C. Fiori, D. C. Joy, and E. Lifshin, Scanning Electron Microscopy and X-ray Microanalysis, p. 127, Plenum, New York (1992).
358.P. R. Ganz, G. Fischer, C. Surgers, and D. M. Schaadt, Phys. Rev. B, 85 (2012) 165204.
359.H. Okamoto, J. Phase Equilib. Diffuse., 25 (2004) 100.
360.D. Sedmidubsky, J. Leitner, and Z. Sofer, J. Alloys Compd., 452 (2008) 105.
361.A. Corrion, F. Wu, T. Mates, C. S. Gallinat, C. Poblenz, and J. S. Speck, J. Cryst. Growth, 289 (2006) 587.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code