Responsive image
博碩士論文 etd-0129113-093123 詳細資訊
Title page for etd-0129113-093123
論文名稱
Title
甘藷半胱胺酸蛋白分解酶 SPAE 及 SPCP2 參與於塊根胰蛋白酶抑制因子的降解過程
Cysteine proteases SPAE and SPCP2 are associated with the degradation of trypsin inhibitor in sweet potato storage root
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-22
繳交日期
Date of Submission
2013-01-29
關鍵字
Keywords
半胱胺酸蛋白分解酶、球蛋白、儲藏性塊根、發芽、甘藷、胰蛋白酶抑制因子
Cysteine protease, Globulin, Sprouting, Sweet potato, Storage root, Trypsin inhibitor
統計
Statistics
本論文已被瀏覽 5693 次,被下載 345
The thesis/dissertation has been browsed 5693 times, has been downloaded 345 times.
中文摘要
  甘藷半胱胺酸蛋白分解酶SPAE及SPCP2分別與種子中vacuolar processing enzyme (VPE) 以及 papain-like 半胱胺酸蛋白分解酶的胺基酸序列具有高度相似性,而此兩種酵素皆已被證實種子發育過程中,對儲藏性球蛋白 (globulin) 的降解扮演重要的角色。本實驗室先前的轉殖植株研究結果顯示sweet potato asparaginyl endopeptidase (SPAE) 與sweet potato cysteine protease (SPCP2) 對種子儲藏性蛋白質的降解扮演重要角色。因此,本研究進一步探討甘藷塊根發芽過程中,半胱胺酸蛋白分解酶SPAE及SPCP2是否參與儲藏性胰蛋白酶抑制因子的降解。結果顯示,甘藷發芽的塊根中胰蛋白酶抑制因子於催芽3週後開始被降解,並在第4週觀察到胰蛋白酶抑制因子顯著減少,而胰蛋白酶抑制因子的降解位置依次由靠近外皮的外層黃肉往內層黃肉,並以不定芽為中心往外輻射狀降解。對照塊根中老化相關基因SPAE與SPCP2在催芽3週後表現於黃肉中,並在4週後表現量明顯增加,而SPCP1則沒有偵測到表現,SPCP3的表現量無明顯變化。在活體外反應試驗發現外加融合蛋白質SPAE或SPCP2可促進發芽二週的甘藷塊根外層黃肉粗抽液中胰蛋白酶抑制因子的降解,而變性的融合蛋白質SPAE或SPCP2和融合蛋白質SPCP3皆無法顯著地降解胰蛋白酶抑制因子。因此推論SPAE 與SPCP2亦參與在塊根發芽過程胰蛋白酶抑制因子的降解。
Abstract
  Sweet potato cysteine proteases SPAE and SPCP2 exhibited high amino acid sequence identities with seed vacuolar processing enzyme (VPE) and papain-like cysteine protease, respectively, which have been demonstrated to play important roles in association with seed globulin storage protein degradation. Transgenic Arabidorpsis suggested that SPAE and SPCP2 also play important roles in association with seed storage protein degradation. Therefore, the study was focused on whether SPAE and SPCP2 participate in the degradation of storage root trypsin inhibitor (TI) during sprouting. In sweet potato, the major trypsin inhibitor degradation began 3 weeks after sprouting, and became significant 4 weeks later in sprouting storage roots. The reduction of trypsin inhibitors was significant and much earlier at the outer flesh near the skin than that at the inner flesh. The degradation of trypsin inhibitors was also the most significant at the outer flesh nearest to the sprout of the storage root. An inverse correlation between the distance away from the sprout and the trypsin inhibitor degradation was observed. Gene expression of SPAE and SPCP2, but not SPCP3 and SPCP1, increased in the flesh 3 weeks after sprouting and were significantly enhanced 4 weeks later in sprouting storage roots. In vitro degradation assay showed that exogenous application of SPAE or SPCP2 fusion proteins to the crude extract from outer flesh of two-week old sprouts significantly promoted storage trypsin inhibitor degradation. The denatured SPAE/SPCP2 or SPCP3 fusion proteins did not affect trypsin inhibitor degradation. Based on these results, SPAE and SPCP2 participate with specificity in trypsin inhibitor degradation during storage root sprouting.
目次 Table of Contents
目錄
圖次 vi
縮寫表 viii
中文摘要 ix
英文摘要 x
壹、緒論 1
 (一) 葉片老化回收氮源與種子發育儲藏性蛋白質降解 1
 (二) 甘藷葉片老化相關基因 2
   SPAE 3
   SPCP1 4
   SPCP2 5
   SPCP3 6
 (三) 甘藷塊根儲藏性蛋白質 6
 (四) 目的與重要性 8
貳、材料與方法 9
 一、實驗材料 9
 二、實驗方法 9
   催芽過程儲藏性塊根的處理及外觀形態分析 10
   儲藏性塊根發芽過程半胱胺酸蛋白分解酶 (SPCP1、SPCP2、SPCP3) 及天門冬醯胺蛋白分解酶 (SPAE) 的mRNA 表現量 10
   發芽過程儲藏性塊根中胰蛋白酶抑制因子 (Trypsin inhibitor; TI) 的降解分析 10
   外加融合蛋白質SPCP2、SPCP3 或SPAE 基因對儲藏性塊根胰蛋白酶抑制因子降解的分析 11
   甘藷塊根Total RNA 的抽取 12
   RT-PCR 分析 13
   甘藷塊根水溶性蛋白粗萃取 15
   蛋白質定量 15
   SDS-PAGE 電泳分析 16
   融合蛋白質的誘導、萃取與純化 19
   軟體image J 定量分析 21
   軟體SPSS 統計分析 21
參、結果 22
  甘藷塊根發芽過程中天門冬醯胺蛋白分解酶 (SPAE) 與半胱胺酸蛋白分解酶 (SPCP2) 之表現顯著增加 22
  甘藷塊根發芽過程中儲藏性胰蛋白酶抑制因子明顯被降解 22
  外加融合蛋白質SPAE 或SPCP2 對發芽的塊根無明顯影響外層黃肉胰蛋白酶抑制因子的降解 24
  外加融合蛋白質SPAE 及SPCP2 促進發芽的甘藷塊根粗抽液胰蛋白酶抑制因子之降解 25
  外加融合蛋白質SPCP3 並無顯著促進發芽的甘藷塊根粗抽液中胰蛋白酶抑制因子之降解 27
肆、討論 28
參考文獻 32
 
圖次
  圖一、甘藷塊根發芽5週期間之形態變化 43
  圖二、甘藷塊根發芽過程cysteine protease (SPCP1, SPCP2,SPCP3) 及asparaginyl endopepidase SPAE表現分析 44
  圖三、甘藷塊根發芽過程中黃肉之胰蛋白酶抑制因子的含量變化 45
  圖四、甘藷塊根發芽過程中外層黃肉之胰蛋白酶抑制因子的含量變化 46
  圖五、甘藷塊根發芽過程中內層黃肉之胰蛋白酶抑制因子的含量變化 47
  圖六、發芽一週的甘藷塊根以芽為中心不同的直徑距離 ( 05 cm、1 cm、2 cm以及大於2 cm ) 之外層黃肉之胰蛋白酶抑制因子含量的變化 48
  圖七、融合蛋白質SPAE之誘導、表現與純化 49
  圖八、融合蛋白質SPCP2之誘導、表現與純化 50
  圖九、融合蛋白質SPCP3之誘導、表現與純化 51
  圖十、甘藷塊根發芽1週後外加融合蛋白質 (SPAE、SPCP2) 於發芽處對外層黃肉之胰蛋白酶抑制因子含量的影響 52
  圖十一、外加融合蛋白質SPAE對甘藷塊根發芽2週後發芽處外層黃肉的粗抽液內胰蛋白酶抑制因子降解的影響 53
  圖十二、外加融合蛋白質SPCP2對甘藷塊根發芽2週後發芽處外層黃肉的粗抽液內胰蛋白酶抑制因子降解的影響 54
  圖十三、經95℃ 處理或緩衝液 (PBS + 01% SDS) 回溶之融合蛋白質SPAE對胰蛋白酶抑制因子降解的影響 55
  圖十四、經95℃ 處理或緩衝液 (PBS + 01% SDS) 回溶之融合蛋白質SPCP2對胰蛋白酶抑制因子降解的影響 56
  圖十五、外加融合蛋白質SPCP3甘藷塊根發芽2週後發芽處外層黃肉的粗抽液內對胰蛋白酶抑制因子降解的影響 57
參考文獻 References
溫宜嘉,(2004) 甘藷葉片老化相關基因 Asparaginyl endopeptidase 於轉殖阿拉伯芥之研究。 中國文化大學生物科技研究所,碩士論文。
蘇正庭,(2005) 甘藷葉片老化相關基因半胱胺酸蛋白分解酶SPCP2 於轉殖阿拉伯芥之研究。 中國文化大學生物科技研究所,碩士論文。
陳巍珊,(2006) 甘藷 cysteine protease SPCP1 基因的表現與調控。 中國文化大學生物科技研究所,碩士論文。
蔡怡菁,(2010) 轉殖阿拉伯芥植株外源表現甘藷半胱胺酸蛋白分解酶SPCP3改變其生長特徵和增加對乾旱逆境敏感性及細胞死亡。國立中山大學 生物科學系研究所,碩士論文。
沈哲宇,(2010) 從甘藷老化葉片分子選殖mitogen-activated protein kinase cDNA 及乙烯訊息傳導探討。國立中山大學 生物科學系研究所,碩士論文。
林哲緯,(2011) 定性分析一個參與在乙烯及鹽分逆境誘導甘藷葉片老化的calmodulin。 國立中山大學 生物科學系研究所,碩士論文。
Abe, Y., Shirane, K., Yokosawa, H., Matsushita, H., Mittag, M., Kato, I., and Ishii, S.I. (1993). Asparaginyl endopeptidase of jack bean seeds purification, characterization, and high utility in protein sequence analysis. J. Biol. Chem. 268, 3525-3529.
Becker, C., Shutov, A.D., Nong, V.H., Senyuk, V.I., Jung, R., Horstmann, C., Fischer, J., Nielsen, N.C., and Muntz, K. (1995). Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase
from germinating vetch (Vicia sativa L.) seeds. Eur. J. Biochem. 228, 456-462.
Beyene, G., Foyer, C.H., and Kunert, K.J. (2006). Two new cysteine proteinases with specific expression patterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves. J. Exp. Bot. 57, 1431-1443.
Bosch, M., Poulter, N.S., Perry, R.M., Wilkins, K.A., and Franklin-Tong, V.E. (2010). Characterization of a legumain/vacuolar processing enzyme and YVADase activity in papaver pollen. Plant Molecular Biology 74, 381-393.
Bozhkov, P.V., Suarez, M.F., Filonova, L.H., Daniel, G., Zamyatnin, A.A., Jr., Rodriguez-Nieto, S., Zhivotovsky, B., and Smertenko, A. (2005). Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc. Natl. Acad. Sci. USA 102, 14463-14468.
Buchanan-Wollaston, V., and Ainsworth, C. (1997). Leaf senescence in Brassica napus: cloning of senescence related genes by subtractive hybridisation. Plant Molecular Biology 33, 821-834.
Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., and Pink, D. (2003). The molecular analysis of leaf senescence – a genomics approach. Plant Biotechnology Journal 1, 3-22.
Chen, H.J., Huang, D.J., Hou, W.C., Liu, J.S., and Lin, Y.H. (2006). Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of Plant Physiology 163, 863-876.
Chen, H.J., Wen, I.C., Huang, G.J., Hou, W.C., and Lin, Y.H. (2008). Expression of sweet potato asparaginyl endopeptidase caused altered phenotypic characteristics in transgenic Arabidopsis. Botanical Studies 49, 109-117.
Chen, H.J., Su, C.T., Lin, C.H., Huang, G.J., and Lin, Y.H. (2010). Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Journal of Plant Physiology 167, 838-847.
Chen, H.J., Hou, W.C., Yang, C.Y., Huang, D.J., Liu, J.S., and Lin, Y.H. (2003). Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas (L.) Lam.) leaves. J. Plant Physiol. 160, 547-555.
Chen, H.J., Hou, W.C., Liu, J.S., Yang, C.Y., Huang, D.J., and Lin, Y.H. (2004). Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. J. Exp. Bot. 55, 825-835.
Chen, H.J., Huang, G.J., Chen, W.S., Su, C.T., Hou, W.C., and Lin, Y.H. (2009). Molecular cloning and expression of a sweet potato cysteine protease SPCP1 from senescent leaves. Botanical Studies 50, 159-170.
Chen, H.J., Tsai, Y.J., Shen, C.Y., Tsai, T.N., Huang, G.J., and Lin, Y.H. (2012). Ectopic expression of sweet potato cysteine protease SPCP3 alters phenotypic traits and enhances drought stress sensitivity in transgenic Arabidopsis plants. Journal of Plant Growth Regulation, doi:10.1007/s00344-012-9281-9
Chen, T.E., Huang, D.J., Lin, Y.H. (2004). Isolation and characterization of a serine protease from the storage roots of sweet potato (Ipomoea batatas [L.] Lam). Plant Science 166, 1019-1026.
Coffeen, W.C., and Wolpert, T.J. (2004). Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16, 857-873.
De Jong, A.J., Hoeberichts, F.A., Yakimova, E.T., Maximova, E., and Woltering, E.J. (2000). Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta 211, 656-662.
del Pozo, O., and Lam, E. (1998). Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Current Biology 8, 1129-1132.
Esteban-Garcia, B., Garrido-Cardenas, J.A., Alonso, D.L., and Garcia-Maroto, F. (2010). A distinct subfamily of papain-like cystein proteinases regulated by senescence and stresses in Glycine max. Journal of Plant Physiology 167, 1101-1108.
Fischer, J., Becker, C., Hillmer, S., Horstmann, C., Neubohn, B., Schlereth, A., Senyuk, V., Shutov, A., and Muntz, K. (2000). The families of papain- and legumain-like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds: developmental patterns, intracellular localization and functions in globulin proteolysis. Plant Molecular Biology 43, 83-101.
Gonzalez-Rabade, N., Badillo-Corona, J.A., Aranda-Barradas, J.S., and Oliver-Salvador Mdel, C. (2011). Production of plant proteases in vivo and in vitro-a review. Biotechnol. Adv. 29, 983-996.
Grudkowska, M., and Zagdańska, B. (2004). Multifunctional role of plant cysteine proteinases. Acta Biochim. Pol. 51, 609-624.
Gruis, D.F., Selinger, D.A., Curran, J.M., and Jung, R. (2002). Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 14, 2863-2882.
Hortensteiner, S., and Feller, U. (2002). Nitrogen metabolism and remobilization during senescence. J. Exp. Bot. 53, 927-937.
Hara-Nishimura, I., Hatsugai, N., Nakaune, S., Kuroyanagi, M., and Nishimura, M. (2005). Vacuolar processing enzyme: an executor of plant cell death. Current Opinion in Plant Biology 8, 404-408.
Hattori, T., Matsuoka, K., and Nakamura, K. (1988). Subcellular localization of the sweet potato tuberous. Agric. Biol. Chem. 52, 1057-1059.
Hattori, T., Nakagawa, S., and Nakamura, K. (1990). High-level expression of tuberous root storage protein genes of sweet potato in stems of plantlets grown in vitro on sucrose medium. Plant Molecular Biology 14, 595-604.
Hayashi, Y., Yamada, K., Shimada, T., Matsushima, R., Nishizawa, N.K., Nishimura, M., and Hara-Nishimura, I. (2001). A proteinase sorting body that prepares for cell death or stress in the epidermal cells of Arabidopsis. Plant Cell Physiology 42, 894-899.
Hiraiwa, N., Nishimura, M., and Hara-Nishimura, I. (1999). Vacuolar processing enzyme is self-catalytically activated by sequential removal of the C-terminal and N-terminal propeptides. Federation of European Biochemical Societies 447, 213-216.
Hou, W.C., Huang, D.J., and Lin, Y.H. (2002). An aspartic type protease degrades trypsin inhibitors, the major root storage proteins of sweet potato (Ipomoea batatas (L.) Lam cv. Tainong 57). Bot. Bull. Acad. Sin. 43, 271-276.
Hou, W.C., and Lin, Y.H. (1997). Dehydroascorbate reductase and monodehydroascorbate reductase activities of trypsin inhibitors, the major sweet potato (Ipomoea batatas [L.] Lam) root storage protein. Plant Science 128, 151-158.
Hou, W.C., and Lin, Y.H. (2002). Sweet potato (Ipomoea batatas (L.) Lam) trypsin inhibitors, the major root storage proteins, inhibit one endogenous serine protease activity. Plant Science 163, 733-739.
Hou, W.C., Chen, Y.C., Chen, H.J., Lin, Y.H., Yang, L.L., and Lee, M.H. (2001). Antioxidant activities of trypsin inhibitor, a 33 kDa root storage protein of sweet potato (Ipomoea batatas (L.) Lam cv. Tainong 57). J. Agric. Food Chem. 49, 2978-2981.
Huang, D.J., Chen, H.J., Hou, W.C., Chen, T.E., Hsu, W.Y., and Lin, Y.H. (2005). Expression and function of a cysteine proteinase cDNA from sweet potato (Ipomoea batatas [L.] Lam ‘Tainong 57’) storage roots. Plant Science 169, 423-431.
Jnoes, D.B., and Gersdorff, C.E.F. (1931). Ipomoein, a globulin from sweet potatoes, Ipomoea batatas. Isolation of a secondary protein derived from ipomoein by enzymic action. Journal of Biological Chemistry 93, 119-126.
Jones, J.T., and Mullet, J.E. (1995). Developmental expression of a turgor-responsive gene that encodes an intrinsic membrane protein. Plant Molecular Biology 28, 983-996.
Kuroyanagi, M., Nishimura, M., and Hara-Nishimura, I. (2002). Activation of arabidopsis vacuolar processing enzyme by self-catalytic removal of an auto-inhibitory domain of the c-terminal propeptide. Plant Cell Physiol. 43, 143-151.
Lin, Y.H., and Tsu, B.S. (1987). Some factors affecting levels of trypsin inhibitor activity of sweet potato (Ipomoea batatas Lam.) roots. Bot. Bull. Academia Sinica 28, 139-149.
Lin, Y.H., and Tsai, M. (1991). In vitro protease activities of four parts of germinated Tainong 57 sweet potato roots. Bot. Bull. Academia Sinica 32, 79-85.
Liu, J., Wu, Y.H., Yang, J.J., Liu, Y.D., and Shen, F.F. (2008). Protein degradation and nitrogen remobilization during leaf senescence. Journal of Plant Biology 51, 11-19.
Muntz, K., Belozersky, M.A., Dunaevsky, Y.E., Schlereth, A., and Tiedemann, J. (2001). Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth. J. Exp. Bot. 52, 1741-1752.
Makino, A., and Osmond, B. (1991). Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol. 96, 355-362.
Martinez, D.E., Costa, M.L., Gomez, F.M., Otegui, M.S., and Guiamet, J.J. (2008). 'Senescence-associated vacuoles' are involved in the degradation of chloroplast proteins in tobacco leaves. The Plant Journal : for Cell and Molecular Biology 56, 196-206.
Martinez, M., Cambra, I., Carrillo, L., Diaz-Mendoza, M., and Diaz, I. (2009). Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiology 151, 1531-1545.
Marty, F. (1999). Plant vacuoles. Plant Cell 11, 587-599.
Masclaux-Daubresse, C., Reisdorf-Cren, M., and Orsel, M. (2008). Leaf nitrogen remobilisation for plant development and grain filling. Plant Biol (Stuttg). 10 Suppl 1, 23-36.
Miernyk, J.A., and Hajduch, M. (2011). Seed proteomics. Journal of Proteomics 74, 389-400.
Muntz, K. (2007). Protein dynamics and proteolysis in plant vacuoles. J. Exp. Bot. 58, 2391-2407.
Murakami, S., Hattori, T., and Nakamura, K. (1986). Structural differences in full-length cDNAs for two classes of sporamin, the major soluble protein of sweet potato tuberous roots. Plant Molecular Biology 7, 343-355.
Nakumura, K., and Matsuoka, K. (1993). Protein targeting to the vacuole in plant cells. Plant Physiol. 101, 1-5.
Noh, Y.S., and Amasino, R.M. (1999). Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol. Biol. 41, 195-206.
Ohto, M.A., Nakamura-Kito, K., and Nakamura, K. (1992). Induction of expression of genes coding for sporamin and β-amylase by polygalacturonic acid in leaf-petiole cuttings of sweet potato. Plant Physiol. 99, 422-427.
Okamoto, T., Yuki, A., Mitsuhashi, N., and Mimamikawa, T. (1999). Asparaginyl endopeptidase (VmPE-1) and autocatalytic processing synergistically activate the vacuolar cysteine proteinase (SH-EP). Eur. J. Biochem. 264, 223-232.
Otegui, M.S., Noh, Y.S., Martinez, D.E., Vila Petroff, M.G., Andrew Staehelin, L., Amasino, R.M., and Guiamet, J.J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant Journal : for Cell and Molecular Biology 41, 831-844.
Palma, J.M., Sandalio, L.M., Corpas, F.J., Romero-Puertas, M.C., McCarthy, I., and del Rio, L.A. (2002). Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol. Biochem. 40, 521-530.
Parrott, D.L., Martin, J.M., and Fischer, A.M. (2010). Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. The New Phytologist 187, 313-331.
Peoples, M.B., and Dalling, M.J. (1988). The interplay between proteolysis and amino acid metabolism during senescence and nitrogen reallocation. In: Nooden LD, Leopold AC, eds. Senescence and aging in plants. San Diego: Academic Press,
181–217.
Pontier, D., Gan, S., Amasino, R.M., Roby, D., and Lam, E. (1999). Markers for hypersensitive response and sequence show distinct patterns of expression. Plant Mol. Biol. 39, 1243-1255.
Roberts, I.N., Caputo, C., Criado, M.V., and Funk, C. (2012). Senescence-associated proteases in plants. Physiol. Plant. 145, 130-139.
Rojo, E., Zouhar, J., Carter, C., Kovaleva, V., and Raikhel, N.V. (2003). A unique mechanism for protein processing and degradation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100, 7389-7394.
Rotari, V.I., He, R., and Gallois, P. (2005). Death by proteases in plants: whodunit. Physiol. Plant. 123, 376-385.
Sajid, M., and McKerrow, J.H. (2002). Cysteine proteases of parasitic organisms. Molecular and Biochemical Parasitology 120, 1-21.
Sanmartin, M., Jaroszewski, L., Raikhel, N.V., and Rojo, E. (2005). Caspases. Regulating death since the origin of life. Plant Physiology 137, 841-847.
Schlereth, A., Standhardt, D., Mock, H., and Muntz, K. (2001). Stored cysteine proteinases start globulin mobilization in protein bodies of embryonic axes and cotyledons during vetch (Vicia sativa L.) seed germination. Planta 212, 718-727.
Schlereth, A., Becker, C., Horstmann, C., Tiedemann, J., and Muntz, K. (2000). Comparison of globulin mobilization and cysteine proteinases in embryonic axes and cotyledons during germination and seedling growth of vetch (Vicia sativa L.). J. Exp. Bot. 51, 1423-1433.
Schroeder, M.R., Borkhsenious, O.N., Matsuoka, K., Nakamura, K., and Raikhel, N.V. (1993). Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol. 101, 451-458.
Senthilkumar, R., and Yeh, K.W. (2012). Multiple biological functions of sporamin related to stress tolerance in sweet potato (Ipomoea batatas Lam). Biotechnol. Adv. 30, 1309-1317.
Senyuk, V., Rotari, V., Becker, C., Zakharov, A., and Horstmann, C. (1998). Does an asparaginyl-specific cysteine endopeptidase trigger phaseolin degradation in cotyledons of kidney bean seedlings? Eur. J. Biochem. 258, 546-558.
Shewry, P.R. (2003). Tuber storage proteins. Annals of Botany 91, 755-769.
Shi, C., and Xu, L.L. (2009). Characters of cysteine endopeptidases in wheat endosperm during seed germination and subsequent seedling growth. Journal of Integrative Plant Biology 51, 52-57.
Shimada, T., Yamada, K., Kataoka, M., Nakaune, S., Koumoto, Y., Kuroyanagi, M., Tabata, S., Kato, T., Shinozaki, K., Seki, M., Kobayashi, M., Kondo, M., Nishimura, M., and Hara-Nishimura, I. (2003). Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. The Journal of Biological Chemistry 278, 32292-32299.
Shutov, A.D., Baumlein, H., Blattner, F.R., and Muntz, K. (2003). Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution. J. Exp. Bot. 54, 1645-1654.
Tan-Wilson, A.L., and Wilson, K.A. (2012). Mobilization of seed protein reserves. Physiol. Plant. 145, 140-153.
Teper-Bamnolker, P., Buskila, Y., Lopesco, Y., Ben-Dor, S., Saad, I., Holdengreber, V., Belausov, E., Zemach, H., Ori, N., Lers, A., and Eshel, D. (2012). Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem. Plant Physiology 158, 2053-2067.
Tian, R.H., Zhang, G.Y., Yan, C.H., and Dai, Y.R. (2000). Involvement of poly (ADP-ribose) polymerase and activation of caspase-3-like protease in heat shock-induced apoptosis in tobacco suspension cells. Federation of European Biochemical Societies 474, 11-15.
Tiedemann, J., Schlereth, A., and Muntz, K. (2001). Differential tissue-specific expression of cysteine proteinases forms the basis for the fine-tuned mobilization of storage globulin during and after germination in legume seeds. Planta 212, 728-738.
Tsiatsiani, L., Gevaert, K., and Van Breusegem, F. (2012). Natural substrates of plant proteases: how can protease degradomics extend our knowledge? Physiol. Plant. 145, 28-40.
Vierstra, R.D. (1996). Proteolysis in plants: mechanisms and functions. Plant Molecular Biology 32, 275-302.
Walter, J., W. M., Collins, W.W., and Purcell, A.E. (1984). Sweet potato protein: a review. J. Agric. Food Chem. 32, 695-699.
Wang, S.J., Lan, Y.C., Chen, S.F., Chen, Y.M., and Yeh, K.W. (2002). Wound-response regulation of the sweet potato sporamin gene promoter region. Plant Molecular Biology 48, 223-231.
Woltering, E.J. (2004). Death proteases come alive. Trends in Plant Science 9, 469-472.
Xiong, L., Lee, H., Ishitani, M., and Zhu, J.K. (2002). Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. The Journal of Biological Chemistry 277, 8588-8596.
Yamada, K., Shimada, T., Nishimura, M., and Hara-Nishimura, I. (2005). A VPE family supporting various vacuolar functions in plants. Physiol. Plant. 123, 369-375.
Yao, P.L., Hwang, M.J., Chan, Y.M., and Yeh, K.W. (2001). Site-directed mutagenesis evidence for a negatively charged trypsin inhibitory loop in sweet potato sporamin. Federation of European Biochemical Societies 496, 134-138.
Yeh, K.W., Chen, J.C., Lin, M.I., Chen, Y.M., and Lin, C.Y. (1997). Functional activity of sporamin from sweet potato (Ipomoea batatas Lam.): a tuber storage protein with trypsin inhibitory activity. Plant Molecular Biology 33, 565-570.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code