Responsive image
博碩士論文 etd-0131113-154746 詳細資訊
Title page for etd-0131113-154746
論文名稱
Title
氧化物奈米粒子及金屬表面之合成、製程和特性應用於偵測生物分子和細菌
Synthesis, fabrication and characterization of oxide nanoparticles and metal surfaces for biomolecules and bacterial detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
228
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-10
繳交日期
Date of Submission
2013-01-31
關鍵字
Keywords
none
Phosphopeptides enrichment, Metal oxide surface, Nanoparticles functionalization, Bacteria detection, MALDI-TOF MS, Metal oxide nanoparticles, Biofilm detection
統計
Statistics
本論文已被瀏覽 5694 次,被下載 175
The thesis/dissertation has been browsed 5694 times, has been downloaded 175 times.
中文摘要
none
Abstract
Metal oxide nanoparticles exhibit unique and diverse applications in biological and biomedical science. The properties of metal oxide nanoparticles and oxide layers on metal surface are attributed to non-stochiometric and quantum size effects. This Ph. D thesis aims exploring the application of bare metal oxide nanoparticles, their fabrication and metal surfaces for biological applications to the detection of biomolecules and bacteria by mass spectrometry. Recently, phosphopeptides have become a critical issue for mapping proteins phosphorylation sites, which are well known as posttranslational modification in proteomics. TiO2 nanoparticles were synthesized and evaluated to serve as multifunctional nanoprobe for microwave-assisted tryptic digestion of phosphoproteins and effective enrichment of phosphopeptides; those were directly analyze by mass spectrometry for phosphopeptides detection. This approach had been applied on α-casein, β-casein and real sample milk phosphopeptides analysis directly by electrospray ionization (ESI) and matrix assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. High sensitivity and sequence coverage of phophopeptides were obtained using TiO2 NPs as microwave absorbers. This effective digestion of phosphoproteins with TiO2 nanoparticles was observed within 45 seconds. NiO NPs have also been applied as simple and highly sensitive substrates for phosphopeptides enrichment from a trypsin predigested phosphoproteins complex solution within 30 seconds in a microwave oven. Further, this technique was combined with centrifugation on-particle ionization/enrichment of phosphopeptides, and phosphopeptides analyzed by MALDI-TOF mass spectrometry. This approach was applied for sensitive and efficient enrichment of the phosphopeptides from real world complex samples like human blood serum, nonfat milk and egg white, successfully. NiO NPs were further applied for evaluating the heat stress system of Escherichia coli (10^7 cfu/mL) at various temperatures and proteins enrichment using MALDI-TOF mass spectrometry. In the presence of NiO NPs significant number of proteins peaks were obtained. The 10 kDa chaperonin (groES) are the principle proteins that operate for the protection of proteins from heat shocked and work for assembling newly synthesized proteins. During the heat stress response with NiO NPs, 10 kDa chaperonin (groES) proteins were detected using MALDI-TOF mass spectrometry. In addition, heat stress effect on E. coli generate more stable protein ions which can be applied for bacterial detection under high temperature conditions from biological, clinical and environmental samples. Fe3O4-NH2 magnetic nanoparticles were fabricated by amoxicillin drug using carbodiimide chemistry. Staphylococcus aureus and Escherichia coli were used for enrichment based on the β-lactam affinity of Fe3O4-Amox magnetic nanoparticles (MNPs) and separated by a strong external magnet. The affinity between functionalized MNPs and bacterial cell surface was explored by TEM and the capture efficiency was confirmed by plate count method. Fe3O4-Amox MNPs, after attachment of 10^4 -10^3 cfu/mL of S. aureus and E. coli, show multiple bacterial protein ion signals in MALDI-TOF mass spectra. The penicillin binding proteins (PBPs) analysis by MALDI-TOF mass spectrometry was performed based on the β-lactam affinity of Fe3O4-Amox MNPs. Multiple high molecular weight PBPs were observed from E. coli in a range of 20 to 55kDa in MALDI mass spectrum. As per S. aureus bacteria, femAB operon based proteins with molecular weight of 49570.4 Da, were observed by MALDI-TOF mass spectrometry using Fe3O4-Amox MNPs. Biofilm studies have extensive significance since their results can provide insights into the behavior of bacteria on material surfaces when exposed to natural water. In this thesis, MALDI-TOF mass spectrometry had been applied to directly analyze exopolysaccharides (EPS) of the biofilm formed on aluminum surfaces exposed to seawater. The optimal conditions for MALDI mass spectrometry applied for EPS analysis of biofilm are described. In addition, microbiologically influenced corrosion of aluminum exposed to sea water by a marine fungus was also observed and identity of the fungus established using MALDI-TOF mass spectrometry analysis of EPS. This study introduces a novel, fast, sensitive and selective platform for biofilm study from natural water without the need of tedious culturing steps or complicated sample pretreatment procedures. The last chapter in this thesis highlights the effects of surface pretreatment methodologies on subsequent oxide film formation on titanium metal surfaces by heat treatment at 600 °C, 700 °C, 800 °C and 900 °C. Different pretreatment methods and high temperature treatment on titanium metals were applied to generate different morphological rutile oxide surfaces. Further, the different oxide films were ablated by Nd-YAG laser. The ablated titanium substrates and their influence on bacterial adhesion were studied. The influence of the different titanium oxide surfaces, their hydrophobicity and hydrophilicity based properties on the effective functioning of the bacterial chips are presented and the surface properties characterized by SEM and contact angle measurements. The result shows that Staphylococcus aureus preferred hydrophilic surfaces and also had an affinity for the non-heat treated control surfaces. Pseudomonas aeruginosa, on the other hand did not prefer the titanium surfaces and only modification of the surfaces by heat treatment and laser ablation could lead to enhanced adhesion of this bacterium. Laser ablation resulted in significant improvement in the attachment of both the bacteria and led to establishing a superhydrophilic surface. Bacterial attachment on different titanium based chips was confirmed by epifloresence microscope and these chips were used directly on a homemade aluminum MALDI target plate for the detection of the captured bacterial proteins by MALDI-TOF mass spectrometry.
目次 Table of Contents
Chapter-1
Introduction………………………………………………………………………………..
1
1.1.0 General Introduction…………………………………………………………….......... 1
1.2.0 Synthesis techniques of oxide nanoparticles……………………………………......... 2
1.3.0 Oxide nanoparticles and microwave based studies for phosphopeptide
enrichment…………………………………………………………………................. 4
1.4.0 Bacteria Cell Envelope and Components……………………………………….......... 7
1.5.0 Bacterial protein profiling by MALDI-TOF MS………………….………………….. 10
1.6.0 Penicillin Binding proteins and bacteria enrichment…………….………………….... 11
1.7.0 Heat stresses on bacteria………………………………………….…………………... 12
1.8.0 Bacterial adhesion and biofilm formation on metal surface……….……………......... 14
1.9.0 Instrumentation…………………………………………………….………………… 15
1.9.1 Laser Desorption and Ionization techniques for biomolecules and bacteria...... 15
1.9.1.1 MALDI mechanism…………………………………………………… 15
1.9.1.2 MALDI matrix considerations biological molecule and bacteria…….. 19
1.9.2 Other ionization techniques for biomolecule and bacteria analysis………....... 19
1.9.3 Transmission and Scanning electron microscopy (TEM and SEM)………...... 21
1.10 Scope of the thesis…………………………………………………………………... 23
1.11 Reference……………………………………………………………………………. 26
Chapter-2
Two-step on-particle ionization/enrichment via a washing- and
separation-free approach: multifunctional TiO2 nanoparticles as
desalting, accelerating, and affinity probes for microwave-assisted tryptic
digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison
with microscale TiO2…………………………………………………………………………………………… 33
2.1.0 Introduction.................................................................................................................. 33
2.2.0 Experimental methods………………………………………...................................... 35
2.2.1 Reagents and materials……………………………………................................ 35
2.2.2 Preparation of solutions ………………………………………......................... 35
2.2.3 Synthesis and preparation of the TiO2 NPs solution …………………………. 36
2.2.4 Preparation of microscale TiO2 solution …………………………………........ 36
2.2.5 Procedures for microwave-assisted tryptic digestion of phosphoproteins
using nanoscale and microscale TiO2 particles in ESI-MS and MALDI MS…. 36
2.2.6 Procedures for two-step on-particle ionization/enrichment of TiO2 NPs
assisted microwave-assisted tryptic digestion of milk………………………….. 37
2.2.7 Instruments……………………………………………………………………... 38
2.2.7.1 Microwave used………………………………………………………… 38
2.2.7.2 ESI-MS analysis…………………………………………………........... 38
2.2.7.3 MALDI time of flight MS analysis…………………………………….. 39
2.2.8 Matching the mass spectral data of ESI-MS and MALDI TOF- MS with the
results of MS-Fit and BioTools……………………………………………....... 39
2.3.0 Results and discussion………………………………………………………………. 39
2.3.1 Characterization of TiO2 NPs ………………………………………………….. 39
2.3.2 Determination of the optimal conditions for TiO2 NPs assisted microwave
assisted tryptic digestions of phosphoproteins…………………………………. 40
2.3.3 Probing the microwave absorbing property of TiO2 NPs and microscale
TiO2 particles in microwave-assisted tryptic digestion of phosphoproteins……. 41
2.3.4 Two-step on-particle ionization / enrichment of TiO2 NPs assisted
microwave-assisted tryptic digestion of α-casein and enrichment of
phosphopeptides in ESI-MS………………………………………………….. 42
2.3.5 Two-step approach for TiO2 NPs assisted microwave assisted tryptic
digestion of α-casein and enrichment of phosphopeptides in MALDI-
TOF-MS………………………………………………………………………… 45
2.3.6 Application of the two-step approach of TiO2 NPs for acceleration and
enrichment of phosphopeptides from milk……………………………………. 48
2.3.7 Application of the two-step approach of TiO2 NPs assisted microwave-
assisted tryptic digestion of phosphoproteins from protein mixtures………..... 50
2.3.8 Detection sensitivity for the two-step approach of TiO2 NPs assisted
microwave-assisted tryptic digestions of phosphoprotein and enrichment
of phosphopeptides in ESI-MS and MALDI-MS……………………………. 51
2.3.9 Principle of two-step on-particle ionization/enrichment of TiO2 NPs
assisted microwave-assisted tryptic digestions of phosphoproteins in ESI-
MS and MALDI-MS………………………………………………………….. 54
2.4.0 Conclusions………………………………………………………………………….. 55
2.5.0 References…………………………………………………………………………… 56
Chapter-3
Highly selective and sensitive enrichment of phosphopeptides via NiO
nanoparticles using a microwave-assisted centrifugation on-particle
ionization/enrichment approach in MALDI-MS………………………....... 60
3.1.0 Introduction………………………………………………………………………….. 60
3.2.0 Experimental………………………………………………………………………… 62
3.2.1 Reagent and materials………………………………………………………… 62
3.2.2 Preparation of NiO NPs………………………………………………………. 63
3.2.3 Tryptic digestion of standard phosphoproteins……………………………..... 63
3.2.4 Procedures for tryptic digestion of nonfat milk and egg white………………. 64
3.2.5 Procedure for enrichment of phosphopeptides on NiO NPs using a
microwave and CF-OPIE approach…………………………………………… 64
3.2.6 Instrumentation and database searches……………………………………...... 65
3.3.0 Results and discussion……………………………………………………………… 66
3.3.1 Characterization of the NiO NPs and the CF-OPIE approach……………….. 66
3.3.2 Optimization of microwave irradiation time in the CF-OPIE approach on
NiO NPs for phosphopetide analysis….……………………………………… 68
3.3.3 Performance of the microwave-assisted CF-OPIE approach for the
isolation of phosphopeptides via NiO NPs..………………………………….. 69
3.3.4 Application of NiO NPs for real sample phosphoproteome analysis………… 78
3.4.0 Conclusions………………………………………………………………………… 83
3.5.0 References………………………………………………………………………….. 84
Chapter-4
Monitoring the heat stress response of Escherichia coli via NiO
nanoparticle assisted MALDI–TOF mass spectrometry……………….....
87
4.1.0 Introduction……………………………………………………………………….... 87
4.2.0 Material and methods……………………………………………………………..... 90
4.2.1 Chemical and reagents………………………………………………………... 90
4.2.2 Bacterial strain and cells culture preparation ……………………………....... 90
4.2.3 Synthesis of NiO nanoparticles ……………………………………………… 91
4.2.4 Procedure of heat treatment to E. coli bacterial cells………………………… 91
4.2.5 Measurement of cells grows that different temperatures treatment................. 92
4.2.6 Sample preparation for transmission electron microscopy................................ 93
4.2.7 Heat treated bacterial cell samples for MALDI–TOF MS analysis………...... 93
4.2.8 MALDI–TOF MS instrumentation and acquisition………………………...... 93
4.3.0 Results and discussion……………………………………………………………… 94
4.4.0 Conclusion………………………………………………………………………..... 106
4.5.0 References………………………………………………………………………...... 107
Chapter 5
Amoxicillin functionalized Fe3O4 magnetic nanoparticles for bacteria
enrichment and large proteins analysis by MALDI-TOF mass
spectrometry………………………………………………………………..... 110
5.1.0 Introduction………………………………………………………………………… 110
5.2.0 Experimental……………………………………………………………................... 112
5.2.1 Materials……………………………………………………………………… 112
5.2.2 Equipment…………………………………………………………………..... 112
5.2.3 Preparation of APTES functionalized Fe3O4 MNPs…………………………. 113
5.2.4 Preparation of amoxicillin functionalized Fe3O4-APTES MNPs……………. 114
5.2.5 Bacterial strain and cells culture preparation………………………………… 115
5.2.6 Bacterial sample preparation, affinity and separation with MNPs analysis
by MALDI TOF mass spectrometry…………………………………….……. 115
5.2.7 Bacterial capture efficiency of Fe3O4-APTES and Fe3O4-Amox MNPs……... 116
5.2.8 Penicillin binding proteins enrichment on Fe3O4-Amox MNPs………….….. 116
5.3.0 Results and discussion………………………………………………………….….. 117
5.3.1 FT-IR spectrum……………………………………………………………...... 117
5.3.2 Thermogravimetric analysis (TGA)………………………………………...... 120
5.3.3 TEM data……………………………………………………………………... 121
5.3.4 MALDI-TOF mass spectrometric analysis of bacteria……………………….. 124
5.3.5 Large Proteins (PBPs) analysis by MALDI MS……………………………… 129
5.4.0 Conclusion …………………………………………………………………………. 132
5.5.0 References………………………………………………………………………….. 133
Chapter-6
Rapid, sensitive and direct analysis of exopolysaccharides from biofilm on
aluminum surfaces exposed to sea water using MALDI-TOF MS…… 136
6.1.0 Introduction………………………………………………………………………… 136
6.2.0 Experimental section……………………………………………………………...... 138
6.2.1 Chemicals and methods………………………………………………………. 138
6.2.2 Preparation of aluminum coupons for biofilm formation…………………… 139
6.2.3 Biofilm formation in seawater………………………………………………. 139
6.2.4 Biofilm sample preparation prior to MS detection…………………………… 139
6.2.5 Preparation of matrix solution……………………………………………….. 140
6.2.6 MALDI-TOF MS and ESI-MS analysis……………………………………… 140
6.3.0 Results and discussion……………………………………………………………. 141
6.3.1 Detection of supernatant and precipitate from biofilm……………………….. 145
6.3.2 Effect of matrix and positive or negative ion mode for detection…………..... 146
6.3.3 Observation of microbiologically influenced corrosion……………………… 150
6.4.0 Conclusion………………………………………………………………………..... 153
6.5.0 References………………………………………………………………………….. 154
Chapter 7
MALDI-MS probing the influence of surface pretreatment, laser ablation
induced hydrophobicity/hydrophilicity of titanium surfaces on the
attachment/inhibition of bacteria…………………………………………………
157
7.1.0 Introduction………………………………………………………………………… 157
7.2.0 Material and Methods……………………………………………………………… 159
7.2.1 Material …………………………………………………………………….... 159
7.2.2 Sample pretreatment………………………………………………………..... 159
7.2.3 Heat treatment and ablation of bacterial chip using Nd-YAG LASER…….... 160
7.2.4 Exposure to bacterial solutions………………………………………………. 160
7.3.0 Result and discussion……………………………………………………………..... 162
7.3.1 Morphological variation in biochip surfaces…………………………………. 162
7.3.2 Surface hydrophobicity/hydrophilicity……………………………………… 165
7.3.3 Effect of pretreatment on bacterial biochip…………………………………... 169
7.3.4 Effect of laser ablation on bacterial biochip…………………………………. 180
7.4.0 Conclusion………………………………………………………………………..... 189
7.5.0 References……………………………………………. 189
Chapter 8, Conclusion of thesis…………192
Appendix-1…………………………...........195
Appendix-2…………………………………197
參考文獻 References
1.11.0 References
[1] R.P. Feynman, In miniaturization, H.D. Gilbert (Ed.), Reinhold Publishing Corp., New
York, (1961), p. 282.
[2] A. Schroeder, D.A. Heller, M.M. Winslow, J.E. Dahlman, G.W. Pratt, R. Langer, T.
Jacks, D.G. Anderson, Nat. Rev. Cancer, 12 (2011) 39.
[3] A. Z. Moshfegh, J. Phys. D: Appl. Phys. 42 (2009) 30.
[4] B. Nowack, T.D. Bucheli, Environmental Pollution 150 (2007) 22.
[5] Anne Kahru, Henri-Charles Dubourguier, Irina Blinova, Angela Ivask and Kaja
Kasemets, Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A
Minireview. Sensors 8 (2008) 5153-5170.
[6] L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, T. V. Belysheva, O. J. Ilegbusi, Gas
Semiconducting Sensors Based on Metal Oxide Nanocomposites. Journal of Materials
Science Research 1 (2012) 56-68.
[7] http://www.azonano.com/news.aspx?newsID=25642
[8] http://www.understandingnano.com/nanotechnology-computer-memory.html
[9] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, J. Phys. Chem. Solids 64 (2003) 1043.
[10] G. Guisbiers, J. Phys. Chem. C 115 (2011) 2616.
[11] M.D. Rossell, Q.M. Ramasse, S.D. Findlay, F. Rechberger, R. Erni, M. Niederberger,
ACS Nano. 6 (2012) 7077.
[12] L. D′Souza, R. Richards, Synthesis of Metal-Oxide Nanoparticles: Liquid-Solid
transformations in “Synthesis, Properties and Applications of Oxide Nanoparticles”
(Rodríguez, J.A., Fernández-García, M; Eds.) Whiley, N. J. (2007), Chpt. 3.
[13] K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Geenstaff, Nature 353 (1991) 414.
27
[14] M.S. Wu, Y.H. Ou, Y.P. Lin, J. Electrochem. Soc. 158 (2011) 231.
[15] C.I. Wu, J.W. Huang, Y.L. Wen, S.B. Wen, Y.H. Shen, M.Y. Yeh, Materials Lett. 62
(2008) 1923.
[16] M.A.L. Quintela, Curr. Opin. Coll. Int. Sci. 8 (2003) 137.
[17] M.C. Advincula, F.G. Rahemtulla, R.C. Advincula, E.T. Ada, J.E. Lemons, S.L.
Biomaterials, 27 (2006) 2201.
[18] B.S. Kwak, B.H. Choi, M.J. Ji, S.M. Park, M. Kang, J. Ind. Eng. Chem. 18 (2012) 11.
[19] C. B Murray, D. J Norris, M. G Bawendi. J Am Chem Soc. 115 (1993) 8706.
[20] T. J Trentler, T. E Denler, J. F Bertone, A. Agrawal, V. L Colvin. J Am Chem Soc.121
(1999) 1613.
[21] M. Green, P. O’Brien. J Chem Soc Chem Commun. (2000) 183.
[22] J. Rosenberger, E.C Scher, A. P Alivisatos. J Am Chem Socn 121(1999) 11595.
[23] O. Pascu, E. Carenza, M. Gich, S. Estradé, F. Peiró, G. Herranz, A. Roig, J. Phys.
Chem. C 116 (2012) 15108.
[24] U. K. Parashar, S. P. Saxena, A. Srivastava, 4(1) (2009) 159.
[25] R. Bali, N. Razak, A. Lumb, A. T. Harris. IEEE Xplore (2006) DOI
10.1109/ICONN.2006.340592.
[26] S. S. Shankar, A. Rai, A. Ahmad, M. Sastry. Journal of colloid and interface science
275 (2004) 496.
[27] S. Li, Y. Shen, A. Xie, X. Yu, L. Qui, L. Zhang, Q. Zhang. Green Chemistry. 9 (2007)
852.
[28] D. R Lovley, J.F Stolz, G. L Nord, E. J. P Phillips. Nature 330 (1987) 252.
28
[29] J. Navin, B. Arpit, C. Jagadish, Tarafdar, K.S. Sunil, P. Jitendra. Appl Microbiol
Biotechnol, (2012) DOI 10.1007/s00253-012-3934-2.
[30] Y. Shchipunov, I. Postnova, Coll. Surf. B: Biointer. 74 (2009) 172.
[31] Y. Gu, Curr. Opin. Coll. Int. Sci. 16 (2011) 470.
[32] J. A. Blackwell, P.W. Carr, J. Chromatogr. A, 549 (1991) 59.
[33] F. Delom, E. Chevet, Proteome Sci. 15 (2006) 1.
[34] W. Y. Chen, Y.C. Chen, Anal. Chem. 79 (2007) 2394.
[35] H. Y. Lin, W.Y. Chen, Y.C. Chen, Anal. Bioanal. Chem. 394 (2009) 2129.
[36] Y. M. Juang, C.J. Chen, C.C. Lai, Anal. Bioanal. Chem. 401 (2011) 1219.
[37] S. K. Kailasa, H.F. Wu, Microchim. Acta 179 (2012) 83.
[38] V. G. Pol, Y. Langzam, A. Zaban, Langmuir 23 (2007) 11211.
[39] A. Jena, R. Vinu, S. A. Shivashankar, G. Madra, Ind. Eng. Chem. Res. 49 (2010) 9636.
[40] A. G. Moat, J. W. Foster, M.P. Spector, Microbial physiology, John Wiley & Sons Ltd,
Wiley-Liss, Inc., New York. USA, (2002).
[41] J. R. Scott, T. C. Barnett, Annu. Rev. Microbiol. 60 (2006) 397.
[42] A. M. Stock, D. C. Wylie, J. M. Mottonen, A. N. Lupas, E. G. Ninfa, A. J. Ninfa, C. E.
Schutt, J. B. Stock, Cold Spring Harb Symp. Quant. Biol. 53 (1988) 49.
[43] D. E. Vance, J. E. Vance, Biochemistry of Lipids, Lipoproteins and Membranes.
Elsevier Science Publishers B. V., Amsterdam, 5th ed., (2008).
[44] J. Hellman, P. M. Loiselle, M. M. Tehan, Infect. Immun. 68 (2000) 2566.
[45] J. C. Lazzaroni, R. Portalier, Mol. Microbiol. 6 (1992) 735.
[46] H. Zhang, J. W. Peterson, D. W. Niesel, G. R. Klimpel, J. Immunol. 159 (1997) 4868.
29
[47] J. Hellman, J.D.J. Roberts, M.M. Tehan, J.E. Allaire, H.S.Warren, J. Biol. Chem. 277
(2002) 14274.
[48] T. J. Beveridge, J. Bacteriol. 181 (1999) 4725.
[49] W. Kan, C.W. Wolgemuth, Biophys. J. 93 (2007) 54.
[50] K. Wahl , S. Wunschel, K. Jarman, N. Valentine, C. Petersen, M. Kingsley, K. Zartolas,
A. Saenz, Anal. Chem. 74 (2002) 6191.
[51] F. Ahmad, H.F. Wu, Analyst. 136 (2011) 4020.
[52] Y. P. Ho, P.M. Reddy, Clin. Chem. 56 (2010) 525.
[53] H. F. Wu, J. Gopal, M. Manikandan, J. Mass Spectrom. 47 (2012) 355.
[54] K. H. Lee, J.W. Lee, S.W. Wang, L.Y. Liu, M.F. Lee, S.T. Chuang, Y.M. Shy, C.L.
Chang, M.C. Wu, C.H. Chi, J. Vet. Diagn. Invest. 20 (2008) 463.
[55] A. M. D. Guilmi, A. Dessen, O. Dideberg, T. Vernet, J. Bacteriol. 185 (2003) 4418.
[56] U. Bertsche, E. Breukink, T. Kast, W. Vollmer, J. Biol. Chem. 280 (2005) 38096.
[57] P. Born, E. Breukink, W. Vollmer, J. Biol. Chem. 281 (2006) 26985.
[58] A. G. Pisabarro, R. Prats, D. Vaquez, A. R. Tebar, J. Bacteriol. 168 (1986) 199.
[59] F. Harris, K. Brandenburg, U. Seydel, D. Phoenix, Eur. J. Biochem. 269 (2002) 5821.
[60] E. Z. Ron, Bacterial Stress Response, Prokaryotes 2 (2006) 1012.
[61] K. J. Boor, PLoS Biol. 4 (2006) 18.
[62] K. Tilly, J. Spence, C. Georgopoulo, J. Bacteriol. (1989) 1585.
[63] B. M. Alba, C.A. Gross, Mol. Microbiol. 52 (2004) 613.
[64] J. P. Anhalt, Anal. Chem. 47 (1975) 219.
[65] T. L. Williams, D. Andrzejewski, J.O. Lay, S.M. Musser, J. Am. Soc. Mass Spectrom.
14 (2003) 342.
30
[66] K. N. Jordan, L. Oxford, C.P. O’Byrne, Appl. Environ. Microbiol. 65 (1999) 3048.
[67] P. R. Weiglmeier, P. R. osch, H. Berkner, Toxins 2 (2010) 2213.
[68] H. Zhang, Z. Ji , T. Xia , H. Meng et al., ACS Nano. 22; 6(5) (2012) 4349.
[69] J. W. Costerton, P. S. Stewart, E. P. Greenberg, Science 284 (1999) 1318.
[70] K. C. Marshall, R. Stout, R. Mitchell, J. Gen. Microbiol. 68 (1971) 337.
[71] B. Carpentier, O. Cerf, J. Appl. Bacteriol. 75 (1993) 499.
[72] A. Omoike, J. Chorover, K.D. Kwon, J.D. Kubicki, Langmuir 20 (2004) 11108.
[73] J. W. Costerton, K. J. Cheng, G. G. Geesey, T.I. Ladd, J.C. Nickel, M. Dasgupta, T. J.
Marrie, Annu. Rev. Microbiol. 41 (1987) 435.
[74] F. Hillenkamp, E. Unsöld, R. Kaufmann, R. Nitsche, Nature 256 (1975) 119.
[75] M. A. Posthumus, Anal. Chem. 50 (1978) 985.
[76] M. Karas, D. Bachmann, F. Hillenkamp, Anal. Chem. 57 (1985) 2935.
[77] M. Karas, D. Bachmann, U. Bahr, F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes,
78 (1987) 53.
[78] K. Dreisewerd, Chem. Rev. 103 (2003) 395.
[79] R. Kruger, M. Karas, J. Am. Soc. Mass Spectrom. 13 (2002) 1218.
[80] G. M. Combie, R. Knochenmuss, J. Amer. Soc. Mass Spectrom. 17 (2006) 737.
[81] R. Knochenmuss, Int. J. Mass Spectrom. 285 (2009) 105.
[82] W. Ens, Y. Mao, F. Mayer, K.G. Standing, Rapid. Commun. Mass Spectrom. 5 (1999)
17.
[83] G. Luo, I. Marginean, L. Ye, A. Vertes, J. Phys. Chem. B, 113 (2008) 6952.
[84] J. M. Campbell, M.L. Vestal, P.S. Blank, S.E. Stein, J.A. Epstein, A.L. Yergey, J. Am.
Soc. mass spectrum. 7 (1996) 225.
31
[85] E. Nordhoff, H. Lehrach, J. Gobom, Int. J. Mass Spectrom. 268 (2007) 139.
[86] I. Garaguso, J. Borlak, Proteomics. 8 (2008) 2583.
[87] W. E. Stephens, Phys. Rev. 69 (1946) 691.
[88] J. T. Watson, O. D. Sparkman, Introduction to mass spectrometry, John Willey & Sons,
4th ed., (2008).
[89] D. W. Armstrong, L. K. Zhang, L. F. He, M. L. Gross, Anal. Chem. 73 (2001) 3679.
[90] A. F. M. Altelaar, I. Klinkert, K. Jalink, R.P.J. de Lange, R.A.H. Adan, R.M.A. Heeren,
S.R. Piersma, Anal. Chem. 78 (2006) 734.
[91] A. Scherl, C. G. Zimmermann-Ivol, J. D. Dio, A. R. Vaezzadeh, P. A. Binz, M. Amez-
Droz, R. Cochard, J. C. Sanchez, M. Glückmann, D. F. Hochstrasser, Rapid. Commun.
Mass Spectrom. 19 (2005) 605.
[92] J. A. McLean, K.A. Stumpo, D.H. Russell, J. Am. Chem. Soc. 127 (2005) 5304.
[93] A. Tempez, M. Ugarov, T. Egan, J. A. Schultz, A. Novikov, S. Della-Negra, Y.
Lebeyec, Pautrat, M. Caroff, V. S. Smentkowski, H. Y. J. Wang, S. N. Jackson, A. S.
Woods. J. Proteome Res. 4 (2005) 540.
[94] A. Novikov, M. Caroff, S. Della-Negra, Y. Lebeyec, M. Pautrat, J.A. Schultz, A.
Tempez, H.-Y.J. Wang, S.N. Jackson, A.S. Woods, Anal. Chem. 76 (2004) 7288.
[95] P. Lorkiewicz, M.C. Yappert, Anal. Chem. 81 (2009) 6596.
[96] A. L. Castro, P. J. Amorim Madeira, M. R. Nunes, F. M. Costa, M. H. Florêncio,
Rapid. Commun. Mass Spectrom. 22 (2008) 3761.
[97] Z. Takáts, J.M. Wiseman, B. Gologan, R.G. Cooks, Science 306 (2004) 471.
[98] http://www.magnet.fsu.edu/education/tutorials/tools/ionization_esi.html
32
[99] http://www.the-scientist.com/?articles.view/articleNo/16165/title/Mass-Spectrometry-
Goes-Offsite/
[100] J. Shiea, C.H. Yuan, M.Z. Huang, S.C. Cheng, Y.L. Ma, W.L. Tseng, H.C. Chang,
W.C. Hung, Anal. Chem. 80 (2008) 4845.
[101] S. Gerbig, O. Golf , J. Balog, J. Denes, Z. Baranyai, A. Zarand, E. Raso, J. Timar, Z.
Takats, Anal. Bioanal. Chem. 403 (2012) 2315.
[102] J. S. Sampson, A.M. Hawkridge, D.C. Muddiman, Rapid. Commun. Mass Spectrom. 21
(2007) 1150.
[103] J. S. Sampson, A.M. Hawkridge, D.C. Muddiman, J. Am. Soc. Mass Spectrom. 17
(2006) 1712.
[104] C. J. Mertz, Introduction to Optical Microscopy. 1st Edition ed., Roberts and Company
Publishers, (2009).
[105] N. Perdrial, N. Liewig, J.E. Delphin, F. Elsass, Chemical Geology, 253 (2008) 196.
[106] H. Chen, J. Hong Lü, W.Q. Liang, Y.H. Huang, W.J. Zhang, D.B. Zhang, Micron. 35
(2004) 311.
[107] W. C. Lee, I.M. Connell, B.A. Blacklaws, Vet. Microbiol. 49 (1996) 93.


2.5.0 References
[1] J. Godovac-Zimmermann, L. R Brown, Mass Spectrom Rev. 20 (2001) 1.
[2] R. Aebersold, D. R Goodlett, Chem. Rev. 101(2001) 269.
[3] P. Kahn, Science 270 (1995) 369.
[4] R.S. Vasan, Circulation 113 (2006) 2335.
[5] X. Jiang, M. Ye, H. Zou, Proteomics 8 (2008) 686.
[6] A. Doucette, D. Craft, L. Li, Anal. Chem. 72 (2000)3355.
[7] J. Duan, Z. Liang, Y. Chun, J. Zhang, L. Zhang, W. Zhang, Y. Zhang, Proteomics 6
(2006) 412.
[8] H. Al-Lawati, P. Watts, K. J. Welham, Analyst 131(2006) 656.
[9] D. Lopez-Ferrer, B. Canas, J. Vazquez, C. Lodeiro, R. Rial-Otero, I. Moura, J. L. Capelo,
Trends Anal Chem 25 (2006) 996.
[10] N. B. Pramanik, U. A. Mirza, Y. H. Ning, Y. H. Liu, P. L. Bartner, P. C. Weber, A. K.
Bose, Protein Sci. 11(2002)2676.
57
[11] S. S. Lin, C. H. Wu, M. C. Sun, C. M. Sun, Y. P. Ho, J Am Soc Mass Spectrom 16
(2005) 581.
[12] H. F. Juan, S. C. Chang, H. C. Huang, S. T. Chen, Proteomics 5 (2005) 840.
[13] W. Y. Chen, Y. C. Chen, Anal. Chem. 79 (2007) 2394.
[14] S. Lin, Z. Lin, G. Yao, C. Deng, P. Yang, X. Zhang, Rapid Commun Mass Spectrom. 21
(2007) 3910.
[15] S. Lin, G. Yao, D. Qi, Y. Li, C. Deng, P. Yang, X. Zhang, Anal. Chem. 80 (2008) 3655.
[16] Y. Feng, D. Fuentes, A. Hawkins, A. Bass, M. N. Rylander, A. Ellioh, R. J. Stafford, J.
T. Oden, Eng. Comput. 25 (2008) 3.
[17] H. Xiao, X. Liu, S. Fu Compos Sci Technol 66 (2006) 2003.
[18] D. Wen, Y. Ding, IEEE Trans Nanotechnol 5 (2006) 220.
[19] E. Topoglidis, B. M. Discher, C. C. Moser, P. L. Dutton, J. R. Durrant, Chem. Biochem.
4 (2003) 1332.
[20] K. J. McKenzie, F. Marken, M. Opallo, Bioelectrochemistry 66 (2005) 41.
[21] H. Zhou, X. Gan, T. Liu, Q. Yang, G. Li, Bioelectrochemistry 69 (2006) 34.
[22] W. Wamer, J. Yin, R. Wei, Free Radic Biol Med 23 (1997) 851.
[23] H. Hidaka, K. Ajisaka, S. Horikoshi, T. Oyamab, K. Takeuchi, J. Zhaoc, N. Serpone, J.
Photochem Photobiol A Chem. 138 (2001) 185.
[24] H. Y. Lin, C. T. Chen, Y. C. Chen, Anal. Chem. 78 (2006) 6873.
[25] C. T. Chen, Y. C. Chen, Anal. Chem. 77 (2005) 5912.
[26] G. T. Cantin, T. R. Shock, S. K. Park, H. D. Madhani, J. R. Yates, Anal. Chem. 79
(2007) 4666.
58
[27] E. C. Simon, M. Young, A. Chan, Z. Bao, P. C. Andrews, Anal. Biochem. 377 (2008)
234.
[28] H. Zhou, R. Tian, M. Ye, S. Xu, S. Feng, C. Pan, X. Jiang, X. Li, H. Zou,
Electrophoresis 28 (2007) 2201.
[29] Y. Zhang, X. Yu, X. Wang, W. Shan, P. Yang, Y. Tang, Chem. Commun, (2004) 2882.
[30] C. Y. Lo, W. Y. Chen, C. T. Chen, Y. C. Chen, J. Proteome. Res. 2 (2007) 887.
[31] C. T. Chen, W. Y. Chen, P. J. Tsai, K. Y. Chien, J. S. Yu, Y. C. Chen, J. Proteome. Res.
6 (2007) 316.
[32] Y. Li, Y. Liu, J. Tang, H. Lin, N. Yao, X. Shen, C. Deng, P. Yang, X. Zhang, J.
Chromatogr. A 1172 (2007) 57.
[33] H. Lu, S. Zhe, C. Dehong, Y. Xijuan, Y. Pengyuan, T. Bo, Z. Dongyuan, J. Colloid.
Interface Sci. 318 (2008) 315.
[34] S. Xu, J. C. Whitin, T. S. Yu, H. Zhou, D. Sun, H. J. Sue, H. Zou, H. J. Cohen, R. N.
Zare, Anal. Chem. 80 (2008) 5542.
[35] C. K. Chang, C. C. Wu, Y. S. Wang, H. C. Chang, Anal. Chem. 80 (2008) 3791.
[36] P. R. Sudhir, H. F. Wu, Anal. Chem. 77 (2005) 7380.
[37] P. R. Sudhir, K. Shrivas, Z. C. Zhou, H. F. Wu, Rapid Commun Mass Spectrom 22
(2008) 3076.
[38] K. Shrivas, H. F. Wu, Anal. Chem. 80 (2008) 2583.
[39] K. Shrivas, H. F. Wu, Rapid Commun Mass Spectrom 22 (2008) 2863.
[40] K. Agrawal, H. F. Wu, Rapid Commun Mass Spectrom 22 (2008) 283.
[41] S. K. Kailasa, K. Kiran, H. F. Wu, Anal. Chem. 80 (2008) 9681.
[42] K. Shrivas, S. K. Kailasa, H. F. Wu, Proteomics 9 (2009) 2656.
59
[43] L. A. Shastri, S. K. Kailasa, H. F. Wu, Rapid Commun Mass Spectrom 23 (2009) 2247.
[44] S. Qourzal, M. Tamimi, A. Assabbane, A. Bouamrane, A. Nounah, L. Laanab, Y. Ait-
lchou, J. Applied. Sci. (2006) 1553.
[45] M. R. Larsen, T. E. Thingholm, O. N. Jensen, P. Roepstorff, T. J. D. Jorgensen, Mol
Cell Proteomics 4 (2005) 873.
[46] F. Wolschin, S. Wienkoop, W. Weckwerth, Proteomics 5 (2005) 4389.
[47] N. Sugiyama, T. Masuda, K. Shinoda, A. Nakamura, M. Tomita, Y. Ishihama, Mol. Cell
Proteomics 6 (2007) 1103.
[48] G. E. Yue, M. G. Roper, C. Balchunas, A. Pulsipher, J. J. Coon, J. Shabanowitz, D. F.
Hunt, J. P. Landers, J. P. Ferrance, Anal. Chim. Acta. 564 (2006) 116.
[49] G. R. Blacken, M. Volny, T. Vaisar, M. Sadilek, F. Turecek, Anal. Chem. 79 (2007)
5449.
[50] S. W. Li, D. X. Zeng, Angew. Chem. Int. Ed. 46 (2007) 4751.
[51] Y. C. Li, Y. S. Lin, P. J. Tsai, C. T. Chen, W. Y. Chen, Y. C. Chen, Anal. Chem. 79
(2007) 7519.
[52] H. Y. Lin, W. Y. Chen, Y. C. Chen, J. Biomed. Nanotechnol. 5 (2009) 215.
[53] H. Y. Lin, W. Y. Chen, Y. C. Chen, Anal. Bioanal. Chem. 394 (2009) 2129.
[54] L. Qiao, C. Roussel, J. Wan, P. Yang, H. H. Girault, B. Liu, J. Proteome Res. 6 (2007)
4763.


3.5.0 References
[1] T. Hunter, Cell. 100 (2000) 113.
[2] T. Pawson, P. Nash, Genes. Dev. 14 (2000) 1027.
[3] J.D. Graves, E.G. Krebs, Pharmacol. Ther. 82 (1999) 111.
[4] M. Bollen, M. Beullens, Trends Cell. Biol. 12 (2002) 138.
[5] G. Manning, G.D. Plowman, T. Hunter, S. Sudarsanam, Trends Biochem. Sci. 27 (2002)
514.
[6] T.C.W. Poon, P.J. Johnson, Clin. Chim. Acta. 313 (2001) 231.
[7] E.P. Diamandis, J. Proteome. Res. 5 (2006) 2079.
[8] A. Sickmann, W. Dormeyer, S. Wortelkamp, D. Woitalla, W. Kuhn, H.E. Meyer, J.
Chromatogr. B, 771 (2002) 167.
[9] C. Nilsson, A. Westman, K. Blennow, R. Ekman, Peptides. 19 (1998) 1137.
[10] V. Saulot, O. Vittecoq, R. Charlionet, P. Fardellone, C. Lange, L. Marvin, N. Machour,
X.L. Loët, D. Gilbert, F. Tron, Arthritis Rheum. 46 (2002) 1196.
[11] S.W.J. Terheggen-Lagro, I.M.S.L. Khouw, A. Schaafsma, E.A.K. Wauters, BMC
Pediatrics. 2 (2002) 1.
[12] F. Tan, Y. Zhang, W. Mi, J. Wang, J. Wei, Y. Cai, X. Qian, J. Proteome. Res. 7 (2008)
1078.
[13] M.R. Larsen, T.E. Thingholm, O.N. Jensen, P. Roepstorff, T.J.D. Jørgensen, Mol. Cell.
Proteomics. 4 (2005) 873.
[14] M.C. Posewitz, P. Tempst, Anal. Chem. 71 (1999) 2883.
[15] C. Pan, M. Ye, Y. Liu, S. Feng, X. Jiang, G. Han, J. Zhu, H. Zou, J. Proteome. Res. 5
(2006) 3114.
85
[16] T.S. Nühse, A. Stensballe, O.N. Jensen, S.C. Peck, Mol. Cell. Proteomics. 2 (2003)
1234.
[17] S. Feng, M. Ye, H. Zhou, X. Jiang, H. Zhou, X. Jiang, X. Jiang, B. Gong, Mol. Cell.
Proteomics. 6 (2007) 1656.
[18] K. Moser, F.M. White, J. Proteome. Res. 5 (2006) 98.
[19] Y.M. Ndassa, C. Orsi, J.A. Marto, J. Proteome. Res. 5 (2006) 2789.
[20] N. Hasan, H.F. Wu, Y.H. Li, M. Nawaz, Anal. Bioanal. Chem. 396 (2010) 2909.
[21] L. Qiao, C. Roussel, J. Wan, P. Yang, H.H. Giroult, B. Liu, J. Proteome. Res. 6 (2007)
4763.
[22] M.R. Larsen, T.E. Thingholm, O.N. Jensen, P. Roepstorff, J.D. Jǿrgensen, Mol. Cell.
Proteomics. 4 (2005) 873.
[23] X. Liang, G. Fonnum, M. Hajivandi, T. Stene, N.H. Kjus, E. Ragnhildstveit, J.W.
Amshey, P. Predki, R.M. Pope, J. Am. Soc. Mass Spectrom. 18 (2007) 1932.
[24] S.S. Liang, H. Makamba, S.Y. Huang, S.H. Chen, J. Chromatogr. A, 1116 (2006) 38.
[25] F. Torta, M. Fusi, C.S. Casari, C.E. Bottani, A. Bachi, J. Proteome. Res. 8 (2009) 1932.
[26] W.J. Chen, P.J. Tsai, Y.C. Chen, Anal. Chem. 80 (2008) 9612.
[27] C.T. Chen, Y.C. Chen, Anal. Chem. 77 (2005) 5912.
[28] Y. Li, J. Wu, D. Qi, X. Xu, C. Deng, P. Yeng, X. Zhang, Chem. Commun. (2008) 564.
[29] H.K. Kweon, K. Hǻkansson, Anal. Chem. 78 (2006) 1743.
[30] H. Zhou, R. Tian, M. Ye, S. Xu, S. Feng, C. Pan, X. Jiang, H. Zou, Electrophoresis, 28
(2007) 2201.
[31] C.Y. Lo, W.Y. Chen, C.T. Chen, Y.C. Chen, J. Proteome. Res. 6 (2007) 887.
[32] S.B. Ficarro, J.R. Parikh, N.C. Blank, J.A. Marto, Anal. Chem. 80 (2008) 4606.
86
[33] C.T. Chen, Y.C. Chen, J. Biomed Nanotechnol. 4 (2008) 73.
[34] C.T. Chen, Y.C. Chen, J. Mass Spectrom. 43 (2008) 538.
[35] F. Wolschin, S. Wienkoop, W. Weckwerth, Proteomics. 5 (2005) 4389.
[36] H.Y. Lin, W.Y. Chen, Y.C. Chen, Anal. Bioanal. Chem. 394 (2009) 2129.
[37] Y. Li, H. Lin, C. Deng, P. Yang, X. Zhang, Proteomics. 8 (2008) 238.
[38] W.Y. Chen, Y.C. Chen, Anal. Chem. 79 (2007) 8061.
[39] M.A. Khadar, V. Biju, A. Inoue, Mater. Res. Bull. 38 (2003) 1341.
[40] Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu,
H. Tajima, Physica B. (2003) 329.
[41] D. Ai, X. Dai, Q. Li, C. Deng, S. Kang, China Particulogy, 2 (2004) 157.
[42] S. Vaidya, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Cryst. Growth Des. 9
(2009) 1666.
[43] L. Xiang, X.Y. Deng, Y. Jin, Scr. Mater. 47 (2002) 219.
[44] K.A. Kraus, H.O. Philips, T.A. Carlson, J.S. Johnson, In: Proceedings of the Second
International Conference on Peaceful Uses of Atomic Energy. Geneva, Switzerland
(1958) 3.
[45] J.A. Blackwell, P.W. Carr, J. Chromatogr. A, 549 (1991) 43.
[46] J.A. Blackwell, P.W. Carr, (1991) J. Chromatogr. A, 549 (1991) 59.
[47] A. Holzwarth, J. Lou, T.A. Hatton, P. Laibinis, E. Ind. Eng. Chem. Res. 37 (1998) 2701.
[48] M.C. Maurer, J.L. Peng, S.S. An, J.Y. Trosset, A. Henschen-Edman, H.A. Scheraga,
Biochemistry, 37 (1998) 5888.


4.5.0 References
[1] S. Li, Z. Guo, H.F. Wu, Y. Liu, Z. Yang, C.H. Woo, Anal. Bioanal. Chem. 397 (2010)
2465.
[2] F. Ahmad, M. Siddiqui, O. Babalola, H.F. Wu, Biosens. Bioelectron. 35 (2012) 235.
[3] J. Gopal, H.F. Wu, C. H. Lee, M. Manikandan, Analyst 137 (2012) 357.
[4] F. Ahmad, H. F. Wu, Microchim. Acta 176 (2012) 311.
[5] J.P. Anhalt, Anal. Chem. 47 (1975) 219.
[6] T.L. Williams, D. Andrzejewski, J.O. Lay, S.M. Musser, J. Am. Soc. Mass Spectrom.
14 (2003) 342.
[7] V. Horneffer, J. Haverkamp, H.G. Janseen, R. Notz, J. Am. Soc. Mass Spectrom. 15
(2004) 1444.
[8] T. Yura, K. Nakahigashi, Curr. Opin Microbiol. 2 (1999) 153.
[9] T. Raivio, T. Silhavy, Annu. Rev. Microbiol. 55 (2001) 591.
[10] R. Lange, R. Hengge-Aronis, Mol. Microbiol. 5 (1991) 49.
[11] L.W. Riley, R.S. Remis, S.D. Helgerson, H.B. McGee, J.G. Wells, B.R. Davis, R.J.
Herbert, E.S. Olcott, L.M. Johnson, N.T. Hargrett, P.A. Blake, M.L. Cohen, N. Engl. J.
Med. 308 (1983) 681.
[12] K.N. Jordan, L. Oxford, C.P. O’Byrne, Appl. Environ. Microbiol. 65 (1999) 3048.
[13] P.R. Weiglmeier, P. R‥ osch, H. Berkner, Toxins 2 (2010) 2213.
[14] J. Lin, M.P. Smith, K.C. Chapin, H.S. Baik, G.N. Bennett, J.W. Foster, Appl. Environ.
108
Microbiol. 62 (1996) 3094.
[15] I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators 57 (1999) 147.
[16] M.A. Khadar, V. Biju, A. Inoue, Mater. Res. Bull. 38 (2003) 1341.
[17] N. Hasan, H.F. Wu, Anal. Bioanal. Chem. 400 (2011) 3451.
[18] Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu,
H. Tajima, Physica B 329–333 (2003) 862.
[19] J. Gopal, H.F. Wu, G. Gangaraju, J. Mater. Chem. 21 (2011) 13445.
[20] D. Ai, X. Dai, Q. Li, C. Deng, S. Kang, China Particul. 2 (2004) 157.
[21] L. F. Marvin-Guy, S. Parche, S. Wagnie’re, J. Moulin, R. Zink, M. Kussmann, L.B.
Fay, J. Am. Soc. Mass Spectrom. 15 (2004) 1222.
[22] P. Chen, Y. Lu, P.B. Harrington, Anal. Chem. 80 (2008) 1474.
[23] Y.S. Lin, P.J. Tsai, M.F. Weng, Y.C. Chen, Anal. Chem. 77 (2005) 1753.
[24] M.L. Ochoa, P.B. Harrington, Anal. Chem. 77 (2005) 5258.
[25] K.L. Wahl, S.C. Wunschel, K.H. Jarman, N.B. Valentine, C.E. Petersen, Z. Wang, K.
Dunlop, S.R. Long, L. Li, Anal. Chem. 74 (2002) 3174.
[26] Y. Dai, L. Li, D.C. Roser, S.R. Long, Rapid Commun. Mass Spectrom. 13 (1999) 73.
[27] Z. Wang, L. Russon, L. Li, D.C. Roser, S.R. Long, Rapid Commun. Mass Spectrom.
12 (1998) 456.
[28] F. Ahmad, H.F. Wu, Analyst 136 (2011) 4020.
[29] Y.W. Baekm, Y.J. An, Sci. Total Environ. 409 (2011) 1603.
[30] S. Vaidya, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Cryst. Growth Des. 9
(2009) 1666.
[31] L. Xiang, X.Y. Deng, Y. Jin, Scr. Mater. 47 (2002) 219.
[32] C. Park, S. Zhou, J. Gilmore, S.J. Marqusee, Mol. Biol. 368 (2007) 1426.
[33] A.G. Marr, Mol. Biol. Rev. 55 (1991) 316.
109
[34] S. Li, Z. Guo, H.F. Wu, Y. Liu, Z. Yang, C.H. Woo, Anal. Bioanal. Chem. 397 (2010)
2465.
[35] M. Manikandana, H.F. Wu, N. Hasan, Biosen. Bioelec. 35 (2012) 493.
[36] H.F. Wu, J. Gopal, M. Manikandana, J. Mass Spectrom. 47 (2012) 355.


5.5.0 References
[1] R.W. Peeling, P. G. Smith, P. M. Bossuyt, Nature Rev. Microbiol. 4 (2006) S6.
[2] I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliver. Rev. 54 (2002) 651.
[3] A. P. Alivisatos, Science. 271 (1996) 937.
[4] I. Sondi, O. Siiman, E. Matijevic, Langmuir. 16 (2000) 3118.
[5] S. Ryan, A. J. Kell, H. V. Faassen, L. L. Tay, B. Simard, R. MacKenzie, M. Gilbert, J.
Tanha, Bioconjugate Chem. 20 (2009)1974.
[6] W. Zhang, B. Rittmann, Y. Chen, Environ. Sci. Technol. 45 (2011) 2178.
[7] M. Manikandan, H. F. Wu, N. Hasan, Biosens. Bioelectron. 35 (2012) 497.
[8] N. Hasan, H. F. Wu, Anal Bioanal Chem. 400 (2011) 3462.
[9] D. Akini, J. Sturgis, K. Ragheb, D. Sherman, K. Burkholder, P. Robinson, A.K. Bhunia, S.
Mohammed, R. Bashir, Nature Nanotechnology. 2 (2007) 449.
[10] H. F. Wu, J. Gopal, M. Manikandan, J. Mass Spectrometry. 47 (2012) 363.
[11] J. Gopal, C.H. Lee, H.F. Wu, J.Proteomics. 75 (2012) 2982.
[12] S. Kailasa, H.F. Wu, J. Proteomics. 75 (2012) 2933.
[13] F.C. Tenover. Am. J. Med. 119 (2006) S10.
[14] M.C. McManus, Am. J. Health Syst. Pharm. 54 (1997) 1433.
[15] A.K. Gupta, M. Gupta, Biomaterials. 26 (2005) 4021.
[16] S. Li, Z. Guo, Y. Liu, Z. Yang, H.K. Hui, Talanta 80 (2009) 320.
[17] N. T. K. Thanha, L. A. W. Greena, Nano Today. 5 (2010) 230.
[18] A.J. Madonna, S.V. Cuyk, K. J. Voorhees, Rapid Commun. Mass Spectrom. 17 (2003) 263.
134
[19] M. L. Ochoa, P. B. Harrington, Anal. Chem. 77 (2005) 5267.
[20] J. Jiang, C.E. Parker, J. R. Fuller, T. H. Kawula, C. H. Borchers, Anal. Chim. Acta. 605
(2007) 79.
[21] Y. S. Lin, P. J. Tsai, M.F. Weng, Y. C. Chen, Anal. Chem.77 (2005) 1760.
[22] K. C. Ho, P. J. Tsai, Y.S. Lin, Y.C. Chen, Anal. Chem. 76 (2004) 7268.
[23] J. C. Liu, P.J. Tsai, Y. C. Lee, Y. C. Chen, Anal. Chem. 80 (2008) 5432.
[24] P. Li, J. Li, C. Wu, Q. Wu, J. Li, Nanotechnology. 16 (2005) 1917.
[25] E. Turos, G.S.K. Reddy, K. Greenhalgh, P. Ramaraju, S.C. Abeylath, S. Jang, S. Dickey,
D.V. Limc, Bioorg Med Chem Lett. 17 (2007) 3472.
[26] H. Yang, S.T. Lopia, J. Biomater. Sci. Polymer Edn. 14 (2003) 1056.
[27] D. Sehgal, I.K. Vijay, Anal. Biochem. 218 (1994) 91.
[28] M. V. Rechenberg, B.K. Blake, Y.S.J. Ho, Y. Zhen, C.L. Chepanoske, B.E. Richardson, N.
Xu, V. Kery, Proteomics, 5 (2005) 1773.
[29] M. B. Salinas, N. C. Riu, L. B. Aytes, C. G. Escoda, Med Oral Patol Oral Cir Bucal. 11
(2006) E75.
[30] Y. Hansmann, Curr Probl Dermatol. 37 (2009) 129.
[31] S. Bruni, F. Cariati, M. Casu, A. Lai, A. Musinu, G. Piccaluga, S. Solinas, Nano. Struc.
Mater. 11 (1999) 586.
[32] B. Feng, R.Y. Hong, L.S. Wang, L. Guo, H.Z. Li, J.D.Y. Zheng, D.G. Wei, Colloids and
Surfaces A: Physicochem. Eng. Aspects. 328 (2008) 59.
[33] Z. Xu, Q. Liu, J. A. Finch, Appl. Surf. Sci.120 (1997) 278.
[34] Y. F. Huang, Y. F. Wang, X.P. Yan, Environ. Sci. Technol. 44 (2010) 7913.
[35] J. M. Ghuysen, Int. J. Antimicrob. Agents. 8 (1997) 60.
135
[36] A. Matagne, J. Lamotte-Brasseur, J.M. Frère, Biochem. J. 330 (1998) 598.
[37] I. Massova, S. Mobashery, Antimicrob. Agents Chemother. 42 (1998) 17.
[38] X. Fan, Y. Liu, D. Smith, L. Konermann, K.W.M. Siu, D. Golemi-Kotra, J. Biol. Chem..
282 (2007) 35152.
[39] H. Mottl, W. Keck, Eur. J. Biochem. 200 (1991) 773.
[40] B. G. Spratt, Eur. J. Biochem. 72 (1977) 352.
[41] N. H. Geogopapadakou, S.A. Smith, D.P. Bonner, Antimicrob. Agents Chemother. 22
(1982) 175.
[42] A. Hamilton, D.L. Popham, D.J. Carl, X. Lauth, V. Nizet, A.L. Jones, Infect. Immun. 74
(2006) 6187.
[43] C. Fuda, M. Suvorov, S.B. Vakulenko, S. Mobashery, J. Biol. Chem. 279 (2004) 40806.
[44] B. L. D. Jonge, T. Sidow, Y.S. Chang, H. Labischinski, B. Berger-Bachi, D.A. Gage, A.
Tomasz, J. Bacteriol. 175 (1993) 2782.
[45] A. M. Strandèn, K. Ehlert, H. Labischinski, B. Berger-Bachi, J. Bacteriol. 179 (1997) 16.
[46] H. F. Chambers.Clin. Microbio. Rev. 4 (1997) 791.


6.5 References
[1] T. J. Beveridge, S. A. Makin, J. L. Kadurugamuwa, Z. Li. FEMS Microbiol. Rev. 20
(1997) 291.
[2] H. Dang, C. R. Lovell. Appl. Environ. Microbiol. 66 (2000) 467.
[3] Z. Xiaoqi, P. L. Bishop, M. J. Kupferle. Water Sci. Technol. 37 (1998) 345.
[4] K. K. Kwon, H. S. Lee, S. Y. Jung, J. H. Yim, J. H. Lee, H. K. Lee. J. Microbiol. 40
(2002) 260.
[5] I. W. Sutherland. Pure Appl. Chem. 69 (1997) 1911.
[6] I. W. Sutherland. Microbiology 147 (2001) 3.
[7] J. W. Costerton, K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, T.
Marrie. Ann. Rev. Microbiol. 41 (1987) 435.
[8] F. R. Burton, F. Correia, J. M. Di-Rienzo. Corncobs: a model for oral microbial biofilms,
H. J. Busscher, L. V. Evans, Editors, Oral Biofilms and Plaque Control, Harwood
Academic Publishers: Amsterdam (1998) 145–162.
[9] V. Thiyagarajan, V. P. Venugopalan, K. V. K. Nair, T. Subramoniam. Ind. J. Mar. Sci. 26
(1997) 305.
[10] S. Rajagopal, K.V. K. Nair, A. Azariah. J. Therm. Biology. 20 (1995) 461.
[11] J. Gopal, P. Muraleedharan, H. Sarvamangala, R. P. George, Dayal RK, B. V. R. Tata,
H. S. Khatak, K. A. Natarajan. Biofouling 24 (2008) 275.
[12] J. Gopal, R. P. George, P. Muraleedharan, H.S. Khatak. Biofouling 20 (2004) 167.
155
[13] X. Pan, J. Liu, D. Zhang, C. X. Xi, L. Li, W. Song, J. Yang. Water Sur. Anal. 36 (2010)
111.
[14] X. Y. Li, S. F. Yang. Water Res. 41 (2007) 1022.
[15] B. Stahl, M. Steup, M. Karas, F. Hillenkamp. Anal. Chem. 63 (1991) 1463.
[16] N. Y. Hsu, W. B Yang, C. H. Wong, Y. C. Lee, R. T. Lee, Y. S. Wang, C. H. Chen.
Rapid. Comm. Mass Spectrom. 21 (2007) 2137.
[17] I. B. Beech, J. Sunner. Cur. Opinion Biotech. 15 (2004) 181.
[18] L. Chi, G. Yue, G. Liu, T. Zhang. Appl. Microbiol. Biotechnol. 82 (2009) 793.
[19] R. B. Srivastava, M. Awasthi, M. C. Uprethi, G. N. Mathur. Ind. J. Engineer. Mat. Sci.
13 (2006) 135.
[20] H. O. Bouveng, H. Kiessling, B. Lindlberg, J. McKay. Acta Chem. Scand. 17 (1963)
797.
[21] B. McNeil, B. Kristiansen. Enzyme Microbiol. Tech. 12 (1990) 521.


7.5 References
[1] S. F. Lamolle, M. Monjo, S. P. Lyngstadaas, J. E. Ellingsen, H. J. Haugen. J. Biomed.
Mater. Res. Part A. 88 (2009) 581.
[2] X. Y. Liu, P. K. Chu, C. X. Ding. Mater. Sci. Eng. R. 47 (2004) 49.
[3] C. Damm, F. W. Muller, G. Israel, S. Gablenz, H. P. Abicht. Dye and Pigment. 56,
(2003) 151.
[4] C. B. Greenberg. Thin Solid Films 251 (1994) 81.
[5] R. N. Wenzel. Ind. Eng. Chem. 28 (1936) 988-994.
[6] A. B. D. Cassie, S. Baxter. Tarns. Faraday Soc. 40 (1944) 546-451.
[7] B. Li, B. E. Logan. 36 (2004) 81-90.
[8] S. L. Walker, J. A. Redman. M. Elimelech. Langmuir 20 (2004) 7736.
[9] T. A. Camesano, B. Logan. Envir. Sci. Techn. 34 (2000) 3354.
[10] M. Fletcher. Bacterial adhesion: molecular and ecological diversity. Wiley, New York,
190
(1996).
[11] N. Hasan, H. F. Wu. Anal. Bio. Che. 400 (2011) 3452.
[12] N. Hasan, H. F. Wu, Y. H. Li, M. Nawaz. Ana. Bio. Chem. 396 (2010) 2909.
[13] K. Shellenberger, B. E. Logan. Environ. Sci. Technol. 36 (2002) 184.
[14] J. Gopal, C. H. Lee, H. F. Wu. J. Prot. 75 (2012) 2972.
[15] J. Gopal, J. Narayana, H. F. Wu. Biose. Bioelec. 27 (2011) 201-206.
[16] M. A. Meetani, K. J. Voorhees. J. Am. Soc. Mass Spectrom. 16 (2005)1422.
[17] F. Li, Q. Zhao, C. Wang, X. Lu, X. F. Li, X. C. Le. Anal. Chem. 82 (2010) 3399.
[18] J. Gopal, B. V. R. Tata, R. P. George,P. Muraleedharan, R. K. Dayal. 24 (2008) 447.
[19] J. Gopal, R. P. George, P. Muraleedharan, H. S. Khatak. Biofouling. 20 (2004) 167.
[20] K. Thamaphat, P. Limsuwan, B. Ngotawornchai. Kasetsart J. (Nat. Sci.) 42 (2008) 357.
[21] T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, J. H Boo. Thin Solid Films.
475 (2005), 171.
[22] G. S. Brady, Materials Handbook. NewYork: McGraw-Hill. (1971).
[23] M. M. Hossain, W. Gao. Trends Biomater. Artif. Organs. 22 (2008) 144.
[24] K. Nakata, S. Nishimoto, Y. Yuda, T. Ochiai, T. Murakami, A. Fujishima. Langmuir. 26
(2010) 11628.
[25] U. Jenal. Cur OpinMicrobiol. 7 (2004) 185.
[26] P. Francois, P. Vaudaus,M. Taborelli, M. Tonetti, D. P. Lew, P. Descouts. Clin. Oral.
Impl. Res. 8 (1997) 217.
[27] H. H. M. Rijnaarts, W. Norbe, E. J. Bouwer, J. Lyklema, A. J. B. Zehnder. Col Surf B:
Bioint. 4 (1995) 5.
[28] B. Gottenbos, H. J. Busscher, H. C. Van Der Mei, P. Nieuwenhuis. J Mat Sci: Mat In
191
Med. 13 (2002) 717.
[29] O’Toole G, H. B Kaplan, R. Kolter. Annu Rev Microbiol 54 (2000) 49.
[30] H. C Flemming. Appl Microbiol Biotechnol 59 (2002) 629.
[31] C. Mayer, R. Moritz, C. Kirschner, W. Borchard,R. Maibaum, J. Wingender, H. C.
Flemming. Intern. J. Biol. Macromol. 26 (1999) 3.
[32] W. M. Dunne Jr. Clin Microbiol Rev. 15 (2002) 155.
[33] M. D. Natasa, J. Wang, V. K. Truong, P. Stoddart, F. Malherbe, R. J. Crawford, E. P.
Ivanova. Curr Microbiol 58 (2009) 268.
[34] B. Li, B. E. Logan, Colloids and Surfaces B: Biointerfaces 36, (2004) 81.
[35] V. K. Truong, R. Lapovok, Y. S. Estrin, S. Rundell, J. Y. Wang, C. J. Fluke, R. J.
Crawford, E. P. Ivanova. Biomaterials 31 (2010) 3674.
[36] E. P. Ivanova, V. K. Truong, H. K. Webb, V. A. Baulin, J. Y. Wang, N. Mohammodi, F.
Wang, C. Fluke, R. J. Crawford. SCIENTIFIC REPORTS, 1 (2011) 165, DOI:
10.1038/srep00165.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code