Responsive image
博碩士論文 etd-0201113-124535 詳細資訊
Title page for etd-0201113-124535
論文名稱
Title
利用分子束磊晶在鋁酸鋰基板上成長氮化鎵同質異相量子井微米碟與氮化銦鎵/氮化鎵量子井微米碟及其特性分析
Growth and characterization of GaN heterophased quantum well microdisk and InGaN/GaN quantum well microdisk grown on gamma-LiAlO2 substrate by plasma-assisted molecular beam epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-21
繳交日期
Date of Submission
2013-02-01
關鍵字
Keywords
氮化鎵微米碟、氮化銦鎵/氮化鎵量子井、電漿輔助分子束磊晶、纖維鋅礦/閃鋅礦/纖維鋅礦、氮化鎵
GaN microdisk, InGaN/GaN quantum well, plasma-assisted molecular beam epitaxy (PAMBE), GaN, wurtzite/zinc-blende/wurtzite
統計
Statistics
本論文已被瀏覽 5706 次,被下載 682
The thesis/dissertation has been browsed 5706 times, has been downloaded 682 times.
中文摘要
在本研究中,我們使用電漿輔助分子束磊晶系統,在鋁酸鋰基板LiAlO2 (100)上成長氮化鎵薄膜。由於鋁酸鋰基板同時提供長方形與六角形的基底,可以同時常長M-plane氮化鎵薄膜與自我組裝c-plane單晶氮化鎵微米碟或微米金字塔。以原子模型模擬自我組裝c-plane單晶氮化鎵微米碟或微米金字塔的形成機制,我們發現c-plane單晶氮化鎵微米碟的形成是由於最外層的鎵原子捕獲到氮原子,以發散的成長方式,形成單晶氮化鎵微米碟;而微米金字塔的形成則是因為遺失了最外層的氮原子,以收斂的方式成長,因此形成金字塔狀的氮化鎵單晶結構。
在氮化鎵微米碟元件製作方面,我們製作出纖維鋅礦/閃鋅礦/纖維鋅礦氮化鎵同質異相量子井在氮化鎵微米碟上。從原先纖維鋅礦以ABAB堆疊的方式,旋轉具有三重對稱的N-Ga垂直鍵六十度,變成以ABCABC堆疊的閃鋅礦結構,完成相位轉換;接著,再以相同的轉換方式,從閃鋅礦轉到纖維鋅礦,形成晶格匹配的同質異相量子井。
另外,我們也在氮化鎵微米碟上成長元氮化銦鎵/氮化鎵異質微米碟量子井。藉由調整鎵原子與銦原子的比例,我們成長出銦含量為25%,能隙值為2.31 eV的氮化銦鎵,其能隙值符合Eg(x) = [3.42-x*2.65-x*(1-x)*2.4]。
Abstract
In this thesis, the GaN thin film was grown on γ-LiAlO2 (LAO) substrate by plasma assisted molecular beam epitaxy. The LAO substrate provides two basal planes which are rectangular and hexagonal basal planes; therefore we grew M-plane GaN thin film and self-assembled c-plane single crystal GaN microdisk and micropyramid at the same time. To simulate the mechanism of self-assemble c-plane single crystal GaN microdisk and micropyramid, we realized the GaN microdisk was established with the capture of N atoms by most-outside Ga atoms to form the diverging growth. The GaN micropyramid was established due to the missing of most-outside N atoms to form converging growth.
In fabrication of GaN microdisk device, we have fabricated self-assembled wurtzite/zinc-blende/wurtzite GaN heterophased quantum well on GaN microdisk. The GaN wurtzite structure is stacking in ABAB… layer sequence, the phase transition is obtained with the development of C-layer by rotating the threefold symmetric N-Ga vertical bond of B-layer 60o and then repeats the ABCABC…layer sequence. The zinc-blende/wurtzite phase transition can be established, vice versa. Therefore, the sequence of ABABCABCABAB can be achieved to form wurtzite/zinc-blende/wurtzite GaN heterophased quantum well without lattice mismatch.
In addition, we have also grown InGaN/GaN quantum well atop GaN microdisk. By verifying the ratio of indium and gallium, we obtained the indium concentration of the InxGa1-xN/GaN quantum well to be 25% with a band gap energy of 2.31 eV, which is consistent with the bowing effect of bulk InxGa1-xN: Eg(x) = [3.42-x*2.65-x*(1-x)*2.4] eV.
目次 Table of Contents
Acknowledgement
Abstract……………………………………………………………………1
摘要………………………………………………………………………..3

Chapter 1: Introduction……………………………………………….....4

Chapter 2: The crystal growth of GaN microdisk and micropyramid
2.1 background………………………………………………….10
2.2 sample growth………………………………………………12
2.3 experimental results…………………………………………14

Chapter 3: GaN hetero-phase quantum well on GaN microdisk
3.1 background……………………………………………….....29
3.2 sample growth………………………………………………31
3.3 experimental results…………………………………………33

Chapter 4: InGaN/GaN quantum well on GaN microdisk
4.1 background………………………………………………….45
4.2 sample growth………………………………………………48
4.3 experimental results…………………………………………50

Chapter 5: Conclusions………………………………………………….63
Reference…………………………………………………………………65
List of papers…………………………………………………………...70
參考文獻 References
[1] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 1 34, L1332 (1995)

[2] Khan, M. A.: US5192987 (1993)

[3] M. H. Gau, Ikai Lo, W. T. Wang, J. C. Chiang, and M. M. C. Chou, Recent Patents on Nanotechnology (2007), Vol. 1, No. 3

[4] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra Appl. Phys. Lett. 69, 1438 (1996)

[5] C. L. Hsiao, L. W. Tu, T. W. Chi, H. W. Seo, Q. Y. Chen, and W. K. Chu, J. Vac. Sci. Technol. B 24, 845 (2006)

[6] Y. L. Chen, Ikai Lo, M. H. Gau, C. H. Hsieh, M. W. Sham, W. Y. Pang, Y. C. Hsu, J. K. Tsai, R. Schuber, D. Schaadt, Thin Solid Films 520, 6134–6137 (2012)

[7] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)

[8] F. A. Ponce, D. P. Bour, W. Gotz, and P. J. Wright, Appl. Phys. Lett. 68, 57 (1996)

[9] S. J. Rosner, E. C. Carr, M. L. Ludowise, G. Girolami, and H. I. Erikson, Appl. Phys. Lett. 70, 420 (1997)

[10] J. Y. Shi, L. P. Yu, Y. Z. Wang, G. Y. Zhang, and H. Zhang, Appl. Phys. Lett. 80, 2293 (2002)

[11] I. Lo, K. Y. Hsieh, S. L. Hwang, L. W. Tu, W. C. Mitchel, and A. W. Saxler, Appl. Phys. Lett. 74, 2167 (1999)

[12] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, and U. Mishra, Appl. Phys. Lett. 72, 2247 (1998)

[13] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. Enbaars, and U. K. Mishra, Appl. Phys. Lett. 73, 975 (1998)

[14] I. Lo, J. K. Tsai, W. J. Yao, P. C. Ho, L. W. Tu, T. C. Chang, S. Elhamri, W. C. Mitchel, K. Y. Hsieh, J. H. Huang, H. L. Huang, and W. C. Tsai, Phys. Rev. B 65, 161306 (2002)

[15] I. Lo, J. K. Tsai, M. H. Gau, Y. L. Chen, Z. J. Chang, W. T. Wang, J. C. Chiang, K. R. Wang, C.-N. Chen, T. Aggerstam, and S. Loudordoss, Phys. Rev. B 74, 245325 (2006)

[16] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoyo, and M. Ikeda, Appl. Phys. Lett. 76, 3421 (2000)

[17] D. Cherns, S. J. Henley, and F. A. Ponce, Appl. Phys. Lett. 78, 2691 (2001)

[18] J. A. Garrido, J. L. Sanchez-Rojas, A. Jimenez, E. Munoz, F. Omnes, and P. ibart, Appl. Phys. Lett. 75, 2407 (1999)

[19] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature (London) 406, 865 (2000)

[20] C. Rivera, J. L. Pau, E. Munoz, P. Misra, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 88, 213507 (2006)

[21] P. Misra, Y. J. Sun, O. Brandt, and H. T. Grahn, Appl. Phys. Lett. 83, 4327 (2003)

[22] C. N. Chen, S. H. Chang, M. L. Hung, J.-C. Chiang, I. Lo, W. T. Wang, M. H. Gau, H. F. Kao, and M. E. Lee, J. Appl. Phys. 101, 043104 (2007)

[23] Ikai Lo, C. H. Hsieh, Y. L. Chen, W. Y. Pang, Y. C. Hsu, Jih-Chen Chiang, M. C. Chou, J. K. Tsai, and D. M. Schaadt, Appl. Phys. Lett. 92, 202106 (2008)

[24] C. H. Hsieh, Ikai Lo, M. H. Gau, Y. L. Chen, M. C. Chou, W. Y. Pang, Y. I. Chang, Y. C. Hsu, M. W. Sham, J. C. Chiang, and J. K. Tsai, Jpn. J. Appl. Phys. 47, 891 (2008)

[25] Ikai Lo, C. H. Hsieh, Y. C. Hsu, W. Y. Pang, and M. C. Chou, Appl. Phys. Lett. 94, 062105 (2009)

[26] Ikai Lo, Y. C. Hsu, C. H. Hsieh, W. Y. Pang, M. M. C. Chou, Y. L. Chen, C. H. Shih, and Y. C. Wang, Appl. Phys. Lett. 96, 222105 (2010)

[27] Y. C. Hsu, Ikai Lo, C. H. Shih, W. Y. Pang, C. H. Hu, Y. C. Wang, and M. M. C. Chou, Appl. Phys. Lett. 100, 242101 (2012)

[28] F. A. Ponce and D. P. Bour, Nature (London) 386, 351 (1997)

[29] I. Lo, W. T. Wang, M. H. Gau, S. F. Tsay, and J. C. Chiang, Phys. Rev. B 72, 245329 (2005)
[30] I. Lo, M. H. Gau, J. K. Tsai, Y. L. Chen, Z. J. Chang, W. T. Wang, J. C. Chiang, T. Aggerstam, and S. Lourdudoss, Phys. Rev. B 75, 245307 (2007)

[31] I. Lo, W. T. Wang, M. H. Gau, J. K. Tsai, S. F. Tsay, and J. C. Chiang, Appl. Phys. Lett. 88, 082108 (2006)

[32] I. Lo, W. Y. Pang, Y. L. Chen, Y. C. Hsu, J. C. Chiang, W. H. Lin, W. T. Chiu, J. K. Tsai, and C. N. Chen, Appl. Phys. Lett. 93, 132114 (2008)

[33] L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003)

[34] A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J. E. Northrup, Phys. Rev. Lett. 79, 3934 (1997)

[35] S. Porowski, J. Cryst. Growth 189, 153 (1998)

[36] J. W. Gerlach, A. Hofmann, T. Hoche, F. Frost, and B. Rauschenbach, Appl. Phys. Lett. 88, 011902 (2006)

[37] M. A. Reshchikov and H. Morkoc, J. Appl. Phys. 97, 061301 (2005)

[38] M. A. Reshchikov, D. Huang, F. Yun, L. He, H. Morkoc, D. C. Reynolds, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 79, 3779 (2001)

[39] C. Diaz-Guerra, J. Piqueras, O. Volciuc, V. Popa, and I. M. Tiginyanu, J. Appl. Phys. 100, 023509 (2006)

[40] E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Munoz, U. Jahn, and K. H. Ploog, Phys. Rev. B 62, 16826 (2000)

[41] S. Nakamura, S. Pearton, and G. Fasol, The Blue laser diode, 2nd ed. (Springer, Berlin, 2000), Chap. 10.4.

[42] H. Yang, L. X. Zheng, J. B. Li, X. J. Wang, D. P. Xu, Y. T. Wang, X. W. Hu, and P. D. Han, Appl. Phys. Lett. 74, 2498 (1999)

[43] D. J. As, A. Richter, J. Busch, M. Lubbers, J. Mimkes, and K. Lischka, Appl. Phys. Lett. 76, 13 (2000)

[44] Semiconductors: Group IV Elements and III-V Compounds (Data in Science and Technology), edited by O. Madelung (Springer, New York, 1991)

[45] M. E. Lin, B. N. Sverdlov, S. Strite, H. Morkog, and A. E. Drakin, Electron. Lett. 29, 1759 (1993)

[46] Characterization of Semiconductor Heterostructures and Nanostructures, edited by C. Lamberti (Elsevier, Amsterdam, 2008), p. 209.

[47] B. G. Yacobi and D. B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York, 1990), Chap. 3.6, p. 50.

[48] B. Monemar, Phys. Rev. B 10, 676 (1974)

[49] H. Y. Xu, Z. Liu, Y. Liang, Y. Y. Rao, X. T. Zhang, and S. K. Hark, Appl. Phys. Lett. 95, 133108 (2009)

[50] P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, and D. Hommel, J. Appl. Phys. 98, 093519 (2005)

[51] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. Lett. Part 1 34, L797 (1995)
[52] I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003)
[53] N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Appl. Phys. Lett. 72, 40 (1998)

[54] M. R. Krames, M. Ochiai-Holcomb, G. E. Ho‥fler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, Appl. Phys. Lett. 75, 2365 (1999)

[55] E. F. Schubert, Light-Emitting Diodes, edited by E. F. Schubert (Rensselaer Polytechnic Institute, Cambridge, 2003), p. 121.

[56] L. Vegard, Zeit. F. Physic 5, 17 (1921)

[57] M. A. Reshchikov and H. Morkoc, J. Appl. Phys. 97, 061301 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code