Responsive image
博碩士論文 etd-0204113-121304 詳細資訊
Title page for etd-0204113-121304
論文名稱
Title
熱軋晶粒徑對鐵鈷釩合金再結晶行為與集合組織演化的影響
Effect of hot-rolled grain size on recrystallization behavior and texture evolution of FeCoV alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-01-28
繳交日期
Date of Submission
2013-02-04
關鍵字
Keywords
Fe-Co、Fe-Co-V、冷軋延、熱軋延、晶粒徑、再結晶、集合組織
cold-rolled, hot-rolled, grain size, texture, Fe-Co, recrystallization, Fe-Co-V
統計
Statistics
本論文已被瀏覽 5655 次,被下載 358
The thesis/dissertation has been browsed 5655 times, has been downloaded 358 times.
中文摘要
本研究主要在了解熱軋晶粒徑對35Co和49Co合金中冷軋再結晶行為與集合組織的影響。在材料製備的過程中,兩種合金分別經過熱軋延,熱處理,冷軋延及快速熱處理之步驟;熱軋晶粒徑的控制係以退火溫度與時間調控。
研究結果顯示,35Co及49Co冷軋板集合組織有很強之α-fiber且在{112}<110>位置最強,但冷軋前(熱軋後經熱處理)晶粒徑對冷軋後的35Co和49Co試片的集合組織影響正好相反。35Co試片是晶粒徑較大的冷軋α-fiber較弱,但49Co試片則是晶粒徑較大的冷軋α-fiber較強。35Co及49Co冷軋試片經快速熱處理,在回復階段初期α-fiber及γ-fiber均有增強之趨勢。比較35Co-S、35Co-L 、49Co-S、49Co-L完全再結晶後之ODF可發現,均有{554}<225>位置集合組織強度之形成,此實驗結果與冷軋低碳鋼板經熱處理完全再結晶後生成新的優選方向{554}<225>之結果相似。此外,35Co-S{554}<225>強度大於35Co-L,49Co-S{554}<225>強度也大於49Co-L。在完全再結晶後的晶粒成長階段,35Co及49Co試片均是晶粒徑較大者之γ-fiber較弱。
Abstract
This study tries to explore the influence of hot-rolled grain size on the recrystallization behavior and texture of 35Co and 49Co alloys after cold-rolling. During the process of material preparation, the two alloys are processed by hot rolling, heat treatment, cold rolling and rapid heat treatment. The grain size of hot-rolled band is controlled by proper selection of the annealing temperature and time.

The research results reveal that both 35Co and 49Co alloys have strong α-fiber in cold-rolled sheets with the maximum strength at the position of {112} <110>. However, the influence of the original grain size (being heat treated after hot rolling) on the cold-rolled texture is in opposite direction for 35Co and 49Co alloy. The large-grained 35Co alloy has a weaker γ-fiber in the
cold-rolled state comparing with the small-grained counterpart, while the
large-grained 49Co alloy has a stronger cold-rolling texture as compared with
its small-grained counterpart. After the rapid heat treatment of cold-rolled
35Co and 49Co specimens, both the .α- and γ-fiber in the recovery stage of
annealing are enhanced. Both 35Co and 49Co alloys, irrespective of the grain
size, exhibit a strong texture strength {554} <225> after full recrystallization,
which is similar to that cold-rolled and fully recrystallized low carbon steel
sheet. However, for both alloys, the strength of {554} <225> is stronger in
small-grained specimen than in large-grained counterpart. During the grain
growth stage after recrystallization, both alloys with a larger grain size have a
relatively weaker γ-fiber as compared with their small-grained counterpart.
目次 Table of Contents
中文摘要......................................................................................................................................Ⅰ
英文摘要...................................................................................................................................... Ⅱ
總目錄...........................................................................................................................................Ⅲ
表目錄...........................................................................................................................................Ⅴ
圖目錄...........................................................................................................................................Ⅵ
第一章、 緒論...............................................................................................................................1
第二章、 文獻回顧.......................................................................................................................2
2.1 Fe-Co-V合金簡介.........................................................................................................2
2.1.1 Fe-Co及Fe-Co-V合金發展................................................................................2
2.1.2 Fe-Co合金二元相圖............................................................................................3
2.2 BCC金屬之集合組織....................................................................................................3
2.2.1 BCC金屬的冷軋延及熱軋延集合組織...................................................4
2.2.2 軋延之Fe-Co-V合金之集合組織.............................................................6
2.2.3 BCC金屬之再結晶顯微組織...................................................................6
2.2.4 Fe-Co和Fe-Co-V合金之再結晶行為.....................................................7
2.2.5 Fe-Co-V合金之再結晶顯微組織及集合組織...........................................9
第三章、實驗方法......................................................................... ..............................................10
3.1 試片製備......................................................................................................................10
3.1.1 Fe-Co-V合金....................................................................................................10
3.1.2 熱軋延、熱處理與冷軋………………………………………………………10
3.1.3 冷軋後快速退火..........................................................................................11
3.2 分析方法........................................................................................12
3.2.1 顯微組織觀察............................................................................................12
3.2.2 X光繞射分析........................................................................................12
3.2.3 硬度量測.................................................................................................12
3.2.4 集合組織分析..........................................................................................12
第四章、實驗結果與討論................................................................................................14
4.1 熱軋板金相 …………………………………………………………………………14
4.2 熱軋板經熱處理後之硬度量測…..…………………………..…………………….14
4.3 冷軋與退火金相……………………………………………………………………15
4.3.1 35Co合金......................................................................................................15
4.3.2 49Co合金………...........................................................................................16
4.3.3 35Co及49Co冷軋後熱處理再結晶從開始到完成織溫度區間.................16
4.4 快速退火之35Co及49Co之硬度量測 ……………………………………………18
4.4.1 35Co-S及35Co-L ……….............................................................................18
4.4.2 49Co-S及49Co-L ..........................................................................................18
4.4.3 35Co及49Co冷軋板熱處理溫度對硬度之討論…..................................18
4.5 集合組織……………………………………………………………………………19
4.5.1 35Co及49Co冷軋前及冷軋後之集合組織………………………………19
4.5.2 35Co-S及35Co-L冷軋後快速熱處理之集合組織…………………………20
4.5.3 49Co-S及49Co-L冷軋後快速熱處理之集合組織…………………………21
4.5.4 顯微組織與集合組織演變之關係……………….……………………………22
4.5.4.1冷軋板經快速熱處理與集合組織演變之關係….…………………………22
4.5.4.2熱軋板之熱處理條件對冷軋後經快速熱處理集合組織演變之影響……22
第五章、結論...................................................................................................................24
參考文獻............................................................................................................................26
參考文獻 References
[1] T. Sourmail, Progress in Materials Science, 50 (2005) 816.
[2] J. H. White, C. V. Wahl, Workable magnetic and appliance. US patent No
1,862,559,1932.
[3] A. Duckham, D. Z. Zhang, D. Liang, V. Luzin, R. C. Cammarata , R. L.
Leheny, C. L. Chien, T. P. Weihs, Acta Mater. 51 (2003) 4083.
[4] T. Sourmail, Scripta Mater. 51 (2004) 589.
[5] G. W. Elmen, Magnetic material and appliance. US patent No
1,739,752,1929.
[6] W. C. Ellis, Rensselaer Polytech. Inst. Bull. Eng. Sci. Ser. 16 (1927) 1.
[7] R. S. Sundar and S. C. Deevi. Inter. Mater. Rev. 50 (2005) 157.
[8] L. Kussmann, Zeit. Techn. Physik, 13 (1932) 449.
[9] J. W. Rodgers and W. R. Maddocks, Tech. Rep., 8 (1939).
[10] T. Sourmail, Script. Mater. 52 (2005) 1347.
[11] H. Hu, Texture 1 (1974) 233.
[12] W. B. Lee and B. J. Duggan, Textures and Microstructures, 8-9 (1988)
155.
[13] V. Randle and O. Engler, Introduction to texture analysis, London;
CRCpress, New York., pp. 166-170.
[14] W. B. Hutchinson, Int. Metals Rec. 29 (1984) 25.
[15] K. Lucke and M. Holscher, Steel Res. 62 (1991) 567.
[16] L. Kestens and S. Jacobs, Texture, Stress, and Microstructure, 2008 (2008)
173083.
[17] K. Verbeken, L. Kestens, and J. J. Jonas, Script. Mater. 48 (2003) 1437.
[18] K. Kawahara, J. Mater. Sci. 18 (1983) 3437.
[19] J. N. Deng, Y. L. Yang, Y. D. Wang, J. G. Chen, R. L. Peng, and C. C. Yuan,
J. Mater. Sci. 25 (2009) 219.
[20] H. J. Bunge and U. Kohler, Textures and Microstructures, 28 (1996) 231.
[21] J. T. Park and J. A. Szpunar, Acta. Mater. 51 (2003) 3037.
[22] W. Mao, G. Zhu and Y. Yu, Z. Metallkd. 91 (2000) 211.
[23] R. A. Buckley, Metal. Sci. 13 (1979) 67.
[24] R. G. Davies and N. S. Stoloff, Trans. Metall. Soc. AIME. 236 (1966) 905.
[25] M. V. Markushev and M. Yu Murashkin. Mater. Sci. 367(2004) 234.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code