博碩士論文 etd-0215112-153546 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 李毅威 (Yi-Wei Li) 電子郵件信箱 E-mail 資料不公開
畢業系所 通訊工程研究所(Communications Engineering)
畢業學位 碩士(Master) 畢業時期 100學年第1學期
論文名稱(中) 在LTE 網路上根據RTT 的HARQ 封包排程機制
論文名稱(英) HARQ Packet Scheduling Based on RTT Estimation in LTE Networks
檔案
  • etd-0215112-153546.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外完全公開

    論文語文/頁數 中文/61
    統計 本論文已被瀏覽 5088 次,被下載 3180 次
    摘要(中) LTE (Long Term Evolution)網路中使用HARQ (Hybrid Automatic Repeat reQuest)技術以降低重傳封包的錯誤率,但是目前的HARQ 技術在分配RB (Resource Block)時無法保障real-time 封包的delay constraint,為了避免real-time封包進行重傳時可能會超過delay constraint,在本論文我們提出根據RTT (Round-Trip-Time)的HARQ 排程機制。在此機制中,我們先根據封包服務品質需求分為real-time 與non-real-time 兩種,然後再將real-time 的資料流依照封包的重傳次數分成四種不同優先權的佇列,分別為初次傳送佇列(FTQ)、重傳一次佇列(RTQ1)、重傳兩次佇列(RTQ2)、重傳三次佇列(RTQ3)等四種。然後我們分別計算各佇列封包傳送所花的RTT,再根據RTT 計算重傳封包所要滿足的delay constraint 與各佇列所需要的RB 數目。對於non-real-time 封包,我們定義一個NRTQ 佇列,在real-time 佇列分配完RB 後,我們根據non-real-time 的MBR (Minimum Bit Rate)來分配剩餘的RB 數以避免starvation 的發生。
    為了分析所提出的HARQ 排程機制,我們先定義一個HARQ 封包初次傳送的錯誤機率為p,建立在不同重傳次數下封包傳送發生錯誤的機率模型,進而推導出一個HARQ 封包需要重傳多少次才能成功的機率,與一個HARQ 封包需要傳送多少次才會成功的期望值。接著我們根據RTT 分配各佇列所需的RB 數目與HARQ 封包傳送成功的期望值求得各種網路效能參數,包括real-time 的average packet delay、packet loss ratio (PLR)與non-real-time 的PLR、throughput。最後我們討論改變real-time 的delay constraint 與不同p 值之下,各種網路效能參數的變化。
    摘要(英) In an LTE (Long-Term Evolution) network, HARQ (Hybrid Automatic Repeat reQuest) is used to reduce the error probability of retransmitted packets. However, HARQ cannot guarantee delay constraints for real-time traffic when RBs (Resource Blocks) are allocated improperly. To avoid the retransmitted real-time packets exceeding their delay constraints, we propose an HARQ scheduling scheme based on RTT (Round-Trip-Time) estimation. In this scheme, traffic are classified into real-time and non-real-time queues in which real-time queue are further classified into four sub-queues according to their retransmission times; i.e., the first transmission queue,
    the first retransmission queue, the second retransmission queue, and the third retransmission queue. For the four real-time queues, we estimate RTT and compute the number of RBs required satisfying the delay constraints. To prevent from starvation of non-real-time traffic, after allocating the RBs for real-time traffic, the remaining RBs are allocated for non-real-time traffic according to their MBR
    (Minimum Bit Rate). To analyze the proposed scheduling scheme, we build a mathematical model to derive the successful probability of retransmitted packets and the expected value of packet retransmission times. Finally, we compute average packet delay, average packet loss rate, and the throughput for both real-time and none-real-time traffic by varying packet error probability and the delay constraints of real-time traffic.
    關鍵字(中)
  • RB
  • RTT
  • HARQ
  • LTE
  • real-time
  • 封包重傳
  • non-real-time
  • 關鍵字(英)
  • HARQ
  • LTE
  • packet retransmission
  • non-real-time
  • real-time
  • RTT
  • 論文目次 第一章 緒論 1
    1.1 研究動機 1
    1.2 研究方法 1
    1.3 章節介紹 3
    第二章 LTE 與排程技術 4
    2.1 LTE 4
    2.1.1 OFDMA/SC-FDMA 4
    2.1.2 OFDMA/SC-FDMA 的frame 架構 6
    2.1.3 HARQ 7
    2.2 LTE 的封包運作流程 10
    2.3 HARQ 封包排程的相關研究12
    2.4 本論文的封包排程機制 15
    第三章 OFDM 排程機制 16
    3.1 系統架構 16
    3.2 排程機制 18
    3.2.1 RTT 與RB 20
    3.2.2 排程演算法 24
    第四章 數學分析與結果 27
    4.1 數學分析模型 27
    4.2 效能參數 29
    4.3 數值分析 34
    4.3.1 各佇列的RB 分配量 34
    4.3.2 Real-time 佇列的分析 36
    4.3.2.1 Real-time 的average packet delay 36
    4.3.2.2 Real-time 的PLR 37
    4.3.3 Non-real-time 佇列的分析 38
    4.3.3.1 Non-real-time 的PLR 38
    4.3.3.2 Non-real-time Throughput 39
    第五章 結論與未來工作 41
    5.1 結論 41
    5.2 未來工作 42
    REFERENCES 44
    INDEX 50
    參考文獻 [1] D. Astely, E. Dahlman, A. Furuskar, Y. Jading, M. Lindstrom, and S. Parkvall, “LTE: The Evolution of Mobile Broadband,” IEEE Communications Magazine, vol. 47, pp. 44-51, Apr. 2009.
    [2] Devishree Naidu and Rakhi Tapadiya, “Implementation of Header Compression in 3GPP LTE,” Information Technology: New Generations, pp. 570-574, Jun. 10,
    2009.
    [3] Kaushal P. Makhecha, and Kalpesh H. Wandra, “4G WIRELESS NETWORKS: OPPORTUNITIES AND CHALLENGES,” IEEE India Conference (INDICON), pp. 1-4, Dec. 18-20, 2009.
    [4] Farooq Khan, “LTE for 4G Mobile Broadband: Air Interface Technologies and performance,” Cambridge University Press, 2009.
    [5] Kumudu S. Munasinghe and Abbas Jamalipour, “Interworked WiMAX-3G Cellular Data Networks: An Architecture for Mobility Management and Performance Evaluation,” IEEE Transactions on Wireless Communications, vol. 8, no. 4, pp. 1847-1853, Apr. 2009.
    [6] Bo Rong, Yi Qian, Kejie Lu, Hsiao-Hwa Chen, and Mohsen Guizani, ”Call Admission Control Optimization in WiMAX Networks,” IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp. 2509-2522, Jul. 2008.
    [7] Romano Fantacci, Dania Marabissi, Daniele Tarchi, and Ibrahim Habib,
    “Adaptive Modulation and Coding Techniques for OFDMA Systems,” IEEE
    Transactions on Wireless Communication, vol. 8, no. 9, pp. 4876-4883, Sep.
    2009.
    [8] D. Molteni, M. Nicoli, and U. Spagnolini, “Performance of MIMO-OFDMA Systems in Correlated Fading Channels and Non-Stationary Interference,” IEEE Transactions on Wireless Communication, vol. 10, no. 5, pp. 1480-1494, May 2011.
    [9] Zihuai Lin, Pei Xiao, B. Vucetic, and M. Sellathurai, “Analysis of Receiver Algorithms for LTE SC-FDMA Based Uplink MIMO Systems,” IEEE Transactions on Wireless Communication, vol. 9, pp. 60-65, Jan. 2010.
    [10] Hung-Ta Pai, Yunghsiang S. Han, and Yu-Jung Chu, “New HARQ Scheme Based on Decoding of Tail-Biting Convolutional Codes in IEEE 802.16e,” IEEE Transactions on Vehicular Technology, vol. 60, no.3, pp. 912-918, Mar. 2011.
    [11] Chiao-Yin Huang, Wen-Ching Chung, Chung-Ju Chang, and Fang-Ching Ren, “An Intelligent HARQ Scheme for HSDPA,” IEEE Transactions on Vehicular
    Technology, vol. 60, no. 4, pp. 1602-1611, May 2011.
    [12] Jung-Fu Cheng, “Coding Performance of Hybrid ARQ Schemes,” IEEE Transactions on Communications, vol. 54, no. 6, pp. 1017-1029, Jun. 2006.
    [13] Juan I. Montojo and Laurence B. Milstein, “Effects of Imperfections on the Performance of OFDM Systems,” IEEE Transactions on Communications, vol. 57, no. 7, pp. 2060-2070, Jul. 2009.
    [14] Xianbin Wang, Hao Li, and Hai Lin, “A New Adaptive OFDM System with Precoded Cyclic Prefix for Dynamic Cognitive Radio Communications,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 2, pp. 431-442, Feb. 2011.
    [15] Siyang Liu, Zhendong Luo, Yuanan Liu, and Jinchun Gao, “Spreading Code Design for Downlink Space-Time-Frequency Spreading CDMA,” IEEE Transactions on Vehicular Technology, vol. 57, no. 5, pp. 2933-2946, Sep. 2008.
    [16] Yu Wang and Ian Henning, “A Deterministic Distributed TDMA Scheduling Algorithm for Wireless Sensor Networks,” International Conference on Wireless Communications, Networking and Mobile Computing, pp. 2759-2762, Sep. 21-25, 2007.
    [17] Xuehong Mao, Amine Maaref, and Koon Hoo Teo, “Adaptive Soft Frequency Reuse for Inter-cell Interference Coordination in SC-FDMA based 3GPP LTE Uplinks,” IEEE Global Telecommunications Conference, pp. 1-6, Nov. 30-Dec. 4, 2008.
    [18] 3GPP TS 36.211 V8.6.0, Tech. Spec. Group Radio Access Network, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - Physical Channels and Modulation, (Release 8),” Mar. 2009.
    [19] 3GPP TS 36.104 V9.5.0, Tech. Spec. Group Radio Access Network, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer - Base Station (BS) radio transmission and reception, (Release 9),” Sep. 2010.
    [20] 3GPP TS 36.212 V8.8.0, Tech. Spec. Group Radio Access Network, “Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer – Multiplexing and channel coding, (Release 8),” Dec. 2009.
    [21] Chixiang Ma and Ping Lin, “Efficient Implementation of Rate Matching for LTE Turbo Codes,” International Conference on Future Computer and Communication (ICFCC), vol. 1, pp. 704-708, May 21-24, 2010.
    [22] Zhongqiu He and Fei Zhao, “Performance Of HARQ With AMC Schemes In LTE Downlink,” International Conference on Communications and Mobile Computing, vol. 2, pp. 250-254, Apr. 12-14, 2010.
    [23] Taesoo Kwon and Dong-Ho Cho, “Adaptive-Modulation-and-Coding-Based Transmission of Control Messages for Resource Allocation in Mobile Communication Systems,” IEEE Transactions on Vehicular Technology, vol. 58, no. 6, pp. 2769-2782, Jul. 2009.
    [24] Ohyun Jo, Jong-Wuk Son, and Dong-Ho Cho, “An Enhanced Packet Scheduling Algorithm Combined with HARQ for HSDPA System,” IEEE Communication Letters, vol. 12, no. 4, pp. 247-249, Apr. 2008.
    [25] Ohyun Jo, Jong-Wuk Son, Soo-Yong Jeon, and Dong-Ho Cho, “Enhanced Packet Scheduling Algorithm Providing QoS in High Speed Downlink Packet Access,” IEEE Vehicular Technology Conference, 2006, pp. 1-5, Sep. 25-28, 2006.
    [26] Zhe Li and Ting Gong, “Cross-Layer Optimization for WiMAX Systems,” Wireless Communications Networking and Mobile Computing (WiCOM), pp. 1-4, Sep. 23-25, 2010.
    [27] R. Sandanalaksmi, K. Manivanan, S. Manikandan, R. Barathi, and D. Devanathan, “Fair Channel Aware Packet Scheduling Algorithm for Fast UL HARQ in UTRAN LTE,” International Conference on “Control, Automation, Communication and Energy Conservation (INCACEC), pp. 1-5, Jun. 4-6, 2009.
    [28] Haitao Zheng and Harish Viswanathan, “Optimizing the ARQ Performance in Downlink Packet Data Systems With Scheduling,” IEEE Transactions on Wireless Communications, vol. 4, no. 2, pp. 495-506, Mar. 2005.
    [29] Srivathsan Soundararajan, Prathima Agrawal, and Yihan Li, “An Efficient HARQ Retransmission Algorithm In OFDMA Based Wireless Networks,” 41st Southeastern Symposium on System Theory, pp. 88-93, Mar. 15-17, 2009.
    [30] C. Cho, H. Jin, N. Song, and D. K. Sung, “MCS Selection Algorithms for a Persistent Allocation Scheme to Accommodate VoIP Services in IEEE802.16e OFDMA System,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) , pp. 1–5, Sep. 13-16, 2009.
    [31] H. Jin, C. Cho, N. Song, and D. K. Sung, “Optimal Rate Selection for Persistent Scheduling with HARQ in Time-Correlated Nakagami-m Fading Channels,” IEEE Transactions on Wireless Communication, vol. 10, pp. 637–647, Feb. 2011.
    [32] Riikka Susitaival and Michael Meyer, “LTE coverage improvement by TTI bundling,” IEEE Vehicular Technology Conference, pp. 1-5, Apr. 26-29, 2009.
    [33] Jing Han and Haiming Wang, “Principle and Performance of TTI Bundling For VoIP in LTE FDD Mode,” IEEE Wireless Communications and Networking Conference, pp.1-6, Apr. 5-8, 2009.
    [34] Haiming Wang and Dajie Jiang, “A Novel Bidirectional Resource allocation todecrease Signaling for Retransmission in LTE System,” IEEE Vehicular Technology Conference, pp. 2269-2271, May 20, 2008.
    [35] Kumbesan Sandrasegaran, Huda Adibah Mohd Ramli, and Riyaj Basukala, “Delay-Prioritized Scheduling (DPS) for Real Time Traffic in 3GPP LTE System,” IEEE Wireless Communications and Networking Conference, pp.1-6, Apr. 18-21, 2010.
    [36] Huda Adibah Mohd Ramli, Kumbesan Sandrasegaran, Riyaj Basukala, Rachod Patachaianand, Minjie Xue, and Cheng-Chung Lin, “Resource Allocation Technique for Video Streaming Applications in the LTE System,” Wireless and Optical Communications Conference, pp. 1-5, May 14-15, 2010.
    [37] Sunggu Choi, Kyungkoo Jun, Yeonseung Shin, Seokhoon Kang, and Byoungjo Choi, “MAC Scheduling Scheme for VoIP Traffic Service in 3G LTE,” IEEE Vehicular Technology Conference, pp. 1441-1445, Sep. 30-Oct. 3, 2007.
    [38] Shan Lu, Yi Cai, Li Zhang, Jike Li, Peter Skov, Chunye Wang, and Zhiqiang He, “Channel-Aware Frequency Domain Packet Scheduling for MBMS in LTE,” IEEE Vehicular Technology Conference, pp. 1-5, Apr. 26-29, 2009.
    [39] Liying Li, Gang Wu, Hongbing Xu, Geoffrey Ye Li, and Xin Feng, “A Practical Resource Allocation Approach for Interference Management in LTE Uplink Transmission,” Journal of Communications, vol. 6, no. 4, pp. 301-305, Jul. 2011.
    [40] Junsu Kim, Hu Jin, Dan Keun Sung, and Robert Schober, “Optimal Rate Allocation For Wireless Multicast Systems Employing Hybrid-ARQ with Chase Combining,” IEEE 21st International Symposium on Personal Indoor and
    Mobile Radio Communications, pp. 1207-1211, Sep. 26-30, 2010.
    [41] Kai-Wen Cheng and Jyh-Cheng Chen, “Dynamic Pre-allocation HARQ (DP-HARQ) in IEEE 802.16j Mobile Multihop Relay (MMR),” IEEE International Conference on Communications, pp. 1-6, Jun. 14-18, 2009.
    [42] Kyungkoo JUN, “Packet QoS Aware AMC Selection for 3G LTE of Evolved Packet System,” IEICE Transactions on Communications, vol. E91. B, no. 8, pp. 2740-2743, Aug. 2008.
    口試委員
  • 李宗南 - 召集委員
  • 周孜燦 - 委員
  • 黃國勝 - 委員
  • 黃宗傳 - 委員
  • 許蒼嶺 - 指導教授
  • 口試日期 2012-01-12 繳交日期 2012-02-15

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫