博碩士論文 etd-0510106-181822 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 侯兆徽(Jaw-Huei Hou) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 博士(Ph.D.) 畢業時期 94學年第2學期
論文名稱(中) 在蜂巢式CDMA系統具有可變的數碼保留週期及含蓋範圍的數學分析模型
論文名稱(英) Analytic Models for a Cellular CDMA System with Variable Code Reservation Periods and Cell Coverage
檔案
  • etd-0510106-181822.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外均不公開

    論文語文/頁數 英文/128
    統計 本論文已被瀏覽 5153 次,被下載 2 次
    摘要(中) 本論文中,我們主要針對蜂巢式CDMA通訊系統的兩個會影響系統效能的因素:展頻數碼(spreading code)的保留週期和軟式換手(soft handoff) 的蜂巢含蓋範圍(cell coverage),進行研究及數學分析。首先,我們利用語音及數據信號的特性設計一個新的數碼指定機制。也就是說,當傳送語音信號的用戶使用時,語音用戶具有較高的優先權,它可保留展頻數碼一段時間且此段時間可以持續好幾段話(talk spurts)。當傳送數據信號的用戶要使用時,它可利用未被指定的展頻數碼或借用被語音用戶保留的展頻數碼(語音用戶未傳送語音信號時)來傳送數據信號。此數碼指定機制可以藉由保留展頻數碼時間長短擴展至不同優先權的用戶。然後利用平衡點分析法(EPA)求出此系統的效能,一為對於傳送信號時間較敏感的用戶求其平均封包被刪除的機率,另一為對於傳送信號時間較不敏感的用戶求其傳送封包的平均延遲時間。最後,我們研究在蜂巢式CDMA系統中,將軟式換手的含蓋區域擴大或縮小對於新進系統的用戶及換手的用戶的影響。我們利用數學分析計算新進用戶被阻止進入系統的機率及換手用戶被阻斷的機率,我們發現當固定內部蜂巢(inner cell) 含蓋區域並且擴大外部蜂巢(outer cell)時,此二機率快速的增加;當固定外部蜂巢含蓋區域並且擴大內部蜂巢含蓋區域時,此二機率只有些微的減少。我們也討論當用戶許可控制機制(admission control)加入時,對於新進系統用戶及換手用戶的影響。
    摘要(英) In this dissertation, we present mathematical analyses for a cellular CDMA communication system by investigating two important performance factors, the spreading code reservation periods and the cell coverage in soft handoff. First, an innovative code assignment scheme is presented by fully utilizing the characteristics of voice and data traffic. In other words, a voice terminal has higher priority to reserve a spreading code to transmit packets in multiple talk spurts, while a data terminal can only transmit packets by either employing the unassigned codes or borrowing the codes from the voice terminals during their silent periods. The code assignment scheme is then extended to analyze a priority-based CDMA system where the code reservation periods can be varied. Two performance measures, the average dropping probability for delay-sensitive traffic and the average packet delay for delay-insensitive traffic, are derived from the analytic models based on the equilibrium point analysis (EPA). Finally, for the cellular CDMA system, we study the influences of enlarging or shrinking the soft handoff coverage on the new-call blocking and the handoff-call dropping probabilities. From the mathematical analyses, we reveal that enlarging the outer cell while fixing the inner cell may significantly increase both blocking and dropping probabilities. On the other hand, if we enlarge the inner cell and fix the outer cell, the two probabilities can be reduced slightly. The impact of activating a call admission control on the proposed cellular CDMA system is also discussed.
    關鍵字(中)
  • 無線通訊
  • 軟式換手
  • 優先權
  • 數碼指定
  • 分碼多工
  • 關鍵字(英)
  • Wireless Communications
  • Priority
  • Code Assignment
  • CDMA
  • Soft Handoff
  • 論文目次 List of Figures ………………………………………………………………… vi
    List of Tables ……………………………………………………………………… ix
    1. Introduction ………………………………………………………………… 1
    1.1 Motivation and Objectives …………………………………………… 1
    1.2 Organization …………………………………………………………… 4
    2. Survey of Literatures ……………………………………………………… 5
    2.1 Spread Spectrum and CDMA ……………………………………… 5
    2.2 Code Assignment ……………………………………………………… 8
    2.2.1 Traffic Models …………………………………………… 8
    2.2.2 Multiple Access Protocols …………………………………… 11
    2.2.3 Equilibrium Point Analysis ……………………………………… 16
    2.3 Soft Handoff Coverage ……………………………………………… 18
    2.3.1 Handoff Strategies ……………………………………………… 18
    2.3.2 Call Admission Control ………………………………………… 20
    2.3.3 Previous Works in Soft Handoff ……………………………… 21
    3. A Code Assignment Scheme for Integrated Voice and Data Traffic ………………………………………………… 25
    3.1 The Multiple Access Protocols ……………………………………… 25
    3.2 Performance Evaluation Models …………………………………… 27
    3.2.1 Voice Subsystem Model ………………………………………… 28
    3.2.2 Data Subsystem Model ………………………………………… 37
    3.3.3 Selection of Code Reservation Periods ………………………… 40
    3.3 Numerical Results and Discussions ………………………………… 41
    4. Priority-based CAS with Variable Reservation Periods …………………… 55
    4.1 The Priority-based CAS ……………………………………………… 55
    4.2 The Analytical Models ………………………………………………… 56
    4.2.1 K-priority Subsystem Model …………………………………… 57
    4.2.2 Priority-0 Subsystem Model …………………………………… 65
    4.3 Analytical Results and Discussions …………………………………… 67
    4.3.1 Increasing Three Higher-priority Users ………………………… 68
    4.3.2 Increasing One of the Three Higher-priority Users ……………… 71
    4.3.3 Effects of Changing the Permission Probability ………………… 75
    5. A Soft Handoff Scheme with Variable Cell Coverage ……………………… 78
    5.1 Soft Handoff Model …………………………………………………… 78
    5.1.1 Soft Handoff Region …………………………………………… 78
    5.1.2 Traffic Model …………………………………………………… 80
    5.1.3 System Capacity ………………………………………………… 81
    5.2 Performance Evaluation Model ……………………………………… 82
    5.2.1 System-level Description ……………………………………… 82
    5.2.2 Transition Probability of the Markov Model ………………… 84
    5.2.3 Without Admission Control ……………………………………. 87
    5.2.4 With Admission Control ………………………………………… 88
    5.3 Analytical Results versus Simulation ………………………………… 89
    5.3.1 Simulation Model …………………………………………… 90
    5.3.2 Varying the Soft Handoff Coverage ………………………… 92
    5.3.3 Varying the New-call Arrival Rates per Unit Area …………94
    5.3.4 Varying the Number of Reserved Code Channels …… 95
    5.3.5 Comparing with a Previous Work ……………………………… 97
    5.3.6 Analytic Results versus Simulation ……………………………… 98
    6. Conclusions and Future Works …………………………………………… 99
    6.1 Conclusions …………………………………………………………… 99
    6.2 Contributions ……………………………………………………… 101
    6.3 Future Works ………………………………………………………… 102
    Bibliography …………………………………………………………………… 104
    Vita ……………………………………………………… 114
    參考文獻 [1] A. Brand and H. Aghvami, Multiple Access Protocols for Mobile Communications GPRS, UMTS and Beyond. New York: John Wiley & Sons, 2002.
    [2] Y. C. Wang and L. B. Milstein, “Rejection of multiple narrow-band interference in both BPSK and QPSK DS spread spectrum systems,” IEEE Trans. Commun., vol. 36, no. 2, pp. 195–204, Feb. 1988.
    [3] R. Prasad and T. Ojanpera, “A survey on CDMA: evolution towards wideband CDMA,” in Proc. IEEE ISSSTA, 1998, pp. 323–331.
    [4] D. P. Agrawal and Q. A. Zeng, Introduction to Wireless and Mobile Systems. Pacific Grove, CA: Brooks/Cole-Thomson Learning, 2003.
    [5] K. S. Gilhousen, et al., “On the capacity of a cellular CDMA system,” IEEE Trans. Veh. Technol., vol. 40, no.2, pp. 303–312, May 1991.
    [6] W. C. Y. Lee, Mobile Communications Engineering: Theory and Applications, 2nd ed. New York: McGraw-Hill, 1997.
    [7] L. Zhuge and V. O. K. Li, “Estimation of reverse-link capacity for multiband DS-CDMA systems,” in Proc. the 3rd ACM international workshop on modeling, analysis and simulation of wireless and mobile systems, Aug. 2000, pp. 52–59.
    [8] A. M. Viterbi and A. J. Viterbi, “Erlang capacity of a power controlled CDMA system,” IEEE J. Sel. Areas Commun., vol. 11, no. 6, pp. 892–899, Aug. 1993.
    [9] R. P. F. Hoefel and C. de Almeida, “Capacity loss of CDMA/PRMA systems with imperfect power control loop,” IEE Electron. Lett. vol. 34, no. 10, pp. 1020–1022, May 1998.
    [10] G. Falciasecca et al., “Impact of non-uniform spatial traffic distribution on cellular CDMA performance,” in Proc. PIMRC’94, 1994, pp. 65–69.
    [11] W. C. Y. Lee, “Overview of cellular CDMA,” IEEE Trans. Commun., vol. 40, no. 2, pp. 291–302, May 1991.
    [12] A. J. Viterbi, A. M. Viterbi, and E. Zehavi, “Performance of power controlled wideband terrestrial digital communication,” IEEE Trans. Commun., vol. 41, no. 4, pp. 559–569, Apr. 1993.
    [13] M. G. Jansen and R. Prasad, “Capacity, throughput, and delay analysis of a cellular DS CDMA system with imperfect power control and imperfect sectorization,” IEEE Trans. Veh. Technol. vol. 44, no. 1, pp. 67–75, Feb. 1995.
    [14] Abdelnaser Adas, “Traffic models in broadband networks,” IEEE Commun. Mag., vol.35, no. 7, pp. 82–89, Jul. 1997.
    [15] Leonard Kleinrock, Queuing Systems. New York: John Wiley & Sons, 1975.
    [16] H. Heffes and D. Lucantoni, “A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance,” IEEE J. Sel. Areas Commun., vol. 4, no. 6, pp. 856–868, Sep. 1986.
    [17] I. Nikolaidis and I. Akyildiz, "Source Characterization and Statistical Multiplexing in ATM Networks," Tech. Rep. GIT-CC 92-24, Georgia Tech., 1992.
    [18] T. L. Sheu and J. H. Hou, “A code assignment scheme for CDMA wireless networks with integrated voice and data traffic,” in Proc. IEEE/IEE ICT, 2003, pp. 774–780.
    [19] T. L. Sheu and J. H. Hou, “An integrated CDMA code assignment model for voice and data traffic in wireless communications,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 528–537, Mar. 2005.
    [20] H. Michiel and K. Laevens, “Teletraffic engineering in a broad-band era,” IEEE Proceedings, vol. 85, no. 12, pp. 2007–2033, Dec. 1997.
    [21] H. P. Schwefel, “Behavior of TCP-like elastic traffic at a buffered bottleneck router,” in Proc. INFOCOM, 2001, pp. 1698–1705.
    [22] Y. M Jang and J. Ahn, “A connection admission control using transient outage probability in CDMA systems,” in Proc. IEEE VTC, 2000, pp. 1412–1416.
    [23] R. Venkateswaran et al. “Support for multiway communications in ATM networks,” in Proc. IEEE ATM Workshop, 1998, pp. 339–348.
    [24] H. S. Kim, Y. M. Jang and G. J. Jeon, “A transient analysis approach for connection admission control in multi-cell CDMA networks with smart antennas,” in Proc. IEEE GLOBECOM, 2001, pp. 690–694.
    [25] T. L. Sheu and J. H. Hou, “A priority-based CDMA system with variable code reservation periods for multiclass traffic,” submitted to IEE Proc. Commun.
    [26] L. Tan and Q. T. Zhang, “A reservation random-access protocol for voice/data integrated spread-spectrum multiple-access systems,” IEEE J. Sel. Areas Commun., vol. 14, no. 9, pp. 1717–1727, Dec. 1996.
    [27] S. Nanda, “Analysis of packet reservation multiple access: voice data integration for wireless networks,” in Proc. GLOBECOM, 1990, pp. 1984–1988.
    [28] C. Wong and D. J. Goodman, “A packet reservation multiple access protocol for integrated speech and data transmission,” IEE Proc. Commun. Speech and Vision, vol. 139, no. 6, pp. 607–612, Dec. 1992.
    [29] D . Raychaudhuri and K. Joseph, “Performance evaluation of slotted ALOHA with generalized retransmission backoff,” IEEE Trans. Commun., vol. 38, no. 1, pp. 117–122, Jan. 1990.
    [30] N. Abramson, “The ALOHA system – another alternative for computer communications,” in Proc. 1970 Fall Joint Comput. Conf., 1970, pp. 281–285.
    [31] O. Sallent, and R. Agusti, “A proposal for an adaptive S-ALOHA access system for a mobile CDMA environment,” IEEE Trans. Veh. Technol. vol. 47, no. 3, pp. 977–986, Aug. 1998.
    [32] Y. Wu, X. G. Xia, Q. Zhang, W. Zhu, and Y. Q. Zhang, “Collision probability and throughput analysis in a power-controlled DS-CDMA wireless network,” IEEE Trans. Veh. Technol. vol. 55, no. 1, pp. 350–359, Jan. 2006.
    [33] D. J. Goodman et al, “Packet reservation multiple access for local wireless communications,” IEEE Trans. Commun. vol. 37, no. 8, pp. 885–890, Aug. 1989.
    [34] D. J. Goodman and S. X. Wei, “Efficiency of packet reservation multiple access,” IEEE Trans. Veh. Technol. vol. 40, no. 1, pp. 170–176, Feb. 1991.
    [35] A. E. Brand and A. H. Aghvami, “Performance of a joint CDMA/PRMA protocol for mixed voice/data transmission for third generation mobile communication,” IEEE J. Sel. Areas Commun. vol. 14, no. 9, pp. 1698–1707, Dec. 1996.
    [36] A. E. Brand and A. H. Aghvami, “Joint CDMA/PRMA - A candidate for a third generation radio access protocol,” in Proc. IEE Colloq. Mob. Commun. Towards the Next Millennium and Beyond, 1996, pp. 9/1–9/6.
    [37] A. E. Brand and A. H. Aghvami, “Performance of the joint CDMA/PRMA protocol for voice transmission in a cellular environment,” in Proc. ICC’96, 1996, pp. 616–620.
    [38] K. Mori and K. Ogura, “An investigation of permission probability control in reserved/random CDMA packet radio communications,” in Proc. PIMRC’97, 1997, pp. 933–937.
    [39] K. Mori and K. Ogura,, “An adaptive permission probability control method for integrated voice/data packet communications,” IEICE Trans. Fund. Electron. Commun. Comput. vol. E81A, pp. 1339–1348, Jul. 1998.
    [40] L. Wang, J. Wu, and A. H. Aghvami, “Performance of CDMA/PRMA with adaptive permission probability in packet radio networks,” in Proc. 49th IEEE VTC., 1999, pp. 16–20.
    [41] C. J. Chang, B. W. Chen, T. Y. Liu, and F. C. Ren, “Fuzzy/neural congestion control for integrated voice and data DS-CDMA/FRMA cellular networks,” IEEE J. Sel. Areas Commun. vol. 18, no. 2, pp. 283–293, Feb. 2000.
    [42] R. P. F. Hoefel and C. de Almeida, “The fading effects on the CDMA/PRMA network performance,” in Proc. 49th IEEE VTC., 1999, pp. 16–20.
    [43] Q. Liang, “Explicit CDMA/PRMA in cellular environment,” Electron. Lett., vol. 36, no. 24, pp. 2038–2040, Nov. 2000.
    [44] I. F. Akyildiz, D.A. Levine, and I. Joe, “A slotted CDMA protocol with BER scheduling for wireless multimedia networks,” IEEE/ACM Trans. Networking, vol. 7, no. 2, pp. 146–158, Apr. 1999.
    [45] W. Jiao and S. Li, “A new MAC protocol with RCPC coded hybrid ARQ-II for CDMA networks,” in Proc. 56th IEEE VTC., 2002, pp. 1830–1834.
    [46] L. Lenzini, M. Luise, and R. Reggiannini, “CRDA: a collision resolution and dynamic allocation MAC protocol to integrate data and voice in wireless networks,” IEEE J. Sel. Areas Commun. vol. 19, no. 6, pp. 1153–1163, Jun. 2001.
    [47] S. Lee, A. Ahmad, K. Kim, and Z. J. Haas, “A novel packet scheduling in an enhanced joint CDMA/NC-PRMA protocol for wireless multimedia communications,” in Proc. 58th IEEE VTC., 2003, pp. 3493–3497.
    [48] H. Kang, D. Kim, C. Lee, and K. Kim, “A throughput-efficient code assignment scheme for an integrated voice/data multi-code CDMA system,” in Proc. 51st IEEE VTC., 2000, pp. 1494–1497.
    [49] L. Hu, “Distributed code assignments for CDMA packet radio networks,” IEEE/ACM Trans Networking, vol. 1, no. 6, pp. 668–677, Dec. 1993.
    [50] T. Haruki, J. I. Nishimura, K. Mutsuura, and H. Okada, “CDMA with code assignment control for integrated voice/data transmission”, IEICE Trans. Commun., vol. E85-B, no. 10 pp. 2247–2254, Oct. 2002.
    [51] K. W. Hung and F. Y. Wong, “Performance evaluation of the least conflict sharable spreading code assignment algorithm,” in Proc. PIMRC’96, 1996, pp. 1207–1211.
    [52] S. Tasaka, “Stability and performance analysis of the R-ALOHA packet broadcast system,” IEEE Trans. Comput., vol. 32, no. 8, pp. 717–726, Aug. 1983.
    [53] G. Pierobon, A. Zanella, and A. Salloum, “Contention-TDMA protocol: performance evaluation,” IEEE Trans. Veh. Technol., vol. 51, no. 4, pp. 781–788, July 2002.
    [54] S. Nanda, D. J. Goodman, and U. Timor, “Performance of PRMA : A packet voice protocol for cellular system,” IEEE Trans. Veh. Technol., vol. 40, no. 3, pp. 584–598, Aug. 1991.
    [55] R. P. F. Hoefel and C. de Almeida, “Numerical analysis of joint CDMA/PRMA protocol based on equilibrium point analysis,” Electron. Lett., vol. 35, no. 24, pp. 2093–2095, Nov. 1999.
    [56] Y. B. Lin and A. C. Pang, “Comparing soft and hard handoffs,” IEEE Trans. Veh. Technol., vol. 49, no. 3, pp. 792–798, May 2000.
    [57] D. Wong and T. J. Lim, “Soft handoffs in CDMA mobile systems,” IEEE Personal Commun., vol. 4, no. 6, pp. 6–17, Dec. 1997.
    [58] I. Stojmenovic, Handbook of Wireless Networks and Mobile Computing. New York: John Wiley & Sons, 2002.
    [59] A. J. Viterbi, CDMA: Principle of Spread Spectrum Communication. Redwood, CA: Addison-Wesley, 1995.
    [60] J. W. Chang and D. K. Sung, “Adaptive channel reservation scheme for soft handoff in DS-CDMA cellular systems,” IEEE Trans Veh. Technol., vol. 50, no. 2, pp. 341–353, Mar. 2001.
    [61] S. S. Wang, S. Sridhar, and M. Green, “Adaptive soft handoff method using mobile location information,” in Proc. IEEE 55th VTC, 2002, pp. 1936 –1940.
    [62] M. Casado-Fernandez and H. M. Al-Housami, “Calculation of soft handoff gain for UMTS,” in Proc. 3rd Int’l Conf. 3G Mobile Commun. Technol., 2002, pp. 42 –46.
    [63] T. L. Sheu and J. H. Hou, "On the influences of enlarging and shrinking the soft handoff coverage for a cellular CDMA system," J. Info. Sci. and Eng. (JISE), accepted to appear.
    [64] S. S. Rappaport, Third Generation Wireless Information Networks. Boston, MA: Kluwer Academic Publishers, 1992.
    [65] H. Xie and S. Kuek, “Priority handoff analysis,” in Proc. IEEE 43rd VTC, 1993, pp. 855–858.
    [66] R. Thomas, H. Gilbert and G. Mazziotto, “Influence of the moving of the mobile station on the performance of a radio cellular network,” in Proc. 3rd Nordic Seminar on Digital Land Mobile Radio Communications, 1988, pp. 1-9.
    [67] D. H. Hong and S. S. Rappaport, “Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non- prioritized handoff procedure,” IEEE Trans. Veh. Technol., vol. VT-35, pp. 77–92, Aug. 1986.
    [68] R. Raad, E. Dutkiewicz, and J. Chicharo, “Connection admission control in micro-cellular multi-service mobile networks,” in Proc. 5th IEEE Symp. Comput. Commun., 2000, pp. 600–606.
    [69] S. Kim, T. Kwon, and Y. Choi, “Call admission control for prioritized adaptive multimedia services in wireless/mobile networks,” in Proc. IEEE 51st VTC., 2000, pp. 1536–1540.
    [70] W. Jeon and D. Jeong, “Call admission control for mobile multimedia communications with traffic asymmetry between uplink and downlink,” IEEE Trans. Veh. Technol., vol. 50, no. 1, pp. 59–66 Jan. 2001.
    [71] N. Bartolini and I. Chlamtac, “Improving call admission control procedures by using handoff rate information,” J. Wireless Commun. Mobile Comp., vol. 1, no. 3, pp. 257–268, Aug. 2001.
    [72] R. Ramjee, R. Nagarajan, and D. Towsley, “On optimal call admission control in cellular networks,” in Proc. 15th INFOCOM, 1996, pp. 43–50.
    [73] Y. Fang and Yi Zhang, “Call admission control schemes and performance analysis in wireless mobile networks,” IEEE Trans. Veh. Technol., vol. 51, no. 2, pp. 371–82, Mar. 2002.
    [74] J. Hou and Y. Fang, “Mobility-based call admission control schemes for wireless mobile networks,” J. Wireless Commun. Mobile Comp., vol. 1, no. 3, pp. 269–82, Jan. 2001.
    [75] J. Wu, “Performance analysis of QoS-based voice/data CDMA systems,” Wireless Pers. Commun., vol. 13, no. 3, pp.223–236, Jun. 2000.
    [76] A. J. Viterbi, A. M. Viterbi, K. S. Gilhousen and Z. Zehavi, “Soft handoff extends CDMA cell coverage and increase reverse link capacity,” IEEE J. Sel. Areas Commun., vol. 12, no. 8, pp. 1281–1288, Oct. 1994.
    [77] C. C. Lee and R. Steele, “Effect of soft and softer handoffs on CDMA system capacity,” IEEE Trans. Veh. Technol., vol. 47, no.3, pp. 830–841, Aug. 1998.
    [78] S. Kishore, L. J. Greenstein, H. V. Poor, and S. C. Schwartz, “Soft handoff and uplink capacity in a two-tier CDMA system,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1297–1301, Jul. 2005.
    [79] S. Kishore et al., “Uplink capacity in a CDMA macrocell with a hotspot microcell: Exact and approximate analyses,” IEEE Trans. Wireless Commun., vol. 2, no. 2, pp. 364–374, Mar. 2003.
    [80] S. Kishore et al., “User capacity in a CDMA macrocell with a hotspot microcell: Effects of transmit power constraints and finite dispersion,” in Proc. GLOBECOM, 2003, pp. 1558–1562.
    [81] M. Cho, K. Park, D. Son and K. Cho, “Effect of soft handoffs on channel resources in DS-CDMA mobile systems,” IEICE Trans. Commun., vol. E85-B, pp. 1499–1510, Aug. 2002.
    [82] R. P. Narrainen and F. Takawira, “Performance analysis of soft handoff in CDMA cellular networks,” IEEE Trans. Veh. Technol., vol. 50, no. 6, pp. 1507–1517, Nov. 2001.
    [83] D. K. Kim and D. K. Sung, “Characterization of soft handoff in CDMA systems,” IEEE Trans. Veh. Technol., vol. 48, no. 4, pp. 1195–1202, Jul. 1999.
    [84] D. K. Kim and D. K. Sung, “Traffic management in a multicode CDMA system supporting soft handoffs,” IEEE Trans. Veh. Technol., vol. 51, no. 1, pp.52–62, Jan. 2002.
    [85] V. V. Veeravalli and A. Sendonaris, “The coverage-capacity tradeoff in cellular CDMA systems,” IEEE Trans. Veh. Technol., vol. 48, no. 5, pp. 1443–1450, Sep. 1999.
    [86] V. V. Veeravalli, A. Sendonaris, and N. Jain, “CDMA coverage, capacity, and pole capacity,” in Proc. IEEE 47th VTC., 1997, pp. 1450–1454.
    [87] H. Jiang and C. H. Davis, “Cell-coverage estimation based on duration outage criterion for CDMA cellular systems,” IEEE Trans. Veh. Technol., vol. 52, no. 4, pp. 814–822, Jul. 2003.
    [88] D. Saban et al, “CDMA coverage under mobile heterogeneous network load,” in Proc. IEEE 56th VTC., 2002, pp. 326–330.
    [89] G. Hampel, K. L. Clarkson, J. D. Hobby, and P. A. Polakos, “The tradeoff between coverage and capacity in dynamic optimization of 3G cellular networks,” in Proc. IEEE 58th VTC., 2003, pp. 927–932.
    [90] D. Avidor, N. Hegde and S. Mukherjee, “On the impact of the soft handoff threshold and maximum size of the active group on resource allocation and outage probability in the UTMS system,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 565–577, Mar. 2004.
    [91] Chih-Lin I and R. D. Gillin, “Multi-code CDMA Wireless Personal Communication Networks,” in Proc. ICC, 1995, pp.1060–1064.
    [92] Andrew S. Tanenbaum, Computer Networks, 3rd ed. NJ: Prentice-Hall, 1996.
    [93] R. A. Guerin, “Channel occupancy time distribution in a cellular radio system,” IEEE Trans. Veh. Tech., vol. VT-35, pp. 89–99, Aug. 1987.
    [94] T. S. Rappaport, Wireless Communications: Principles and Practice. NJ: Prentice-Hall, 1996.
    [95] J. A. Khoja, M. A. Al-Shalash, and V. K. Prabhu, “Dynamic system simulator for the modeling of CDMA systems,” in Proc. Intl. Mobility and Wireless Access Workshop, pp. 50–58, Oct. 2002.
    口試委員
  • 黃仁竑 - 召集委員
  • 吳國棟 - 委員
  • 溫志宏 - 委員
  • 田鴻穎 - 委員
  • 陳巽璋 - 委員
  • 高榮鴻 - 委員
  • 黃悅民 - 委員
  • 許蒼嶺 - 指導教授
  • 口試日期 2006-04-28 繳交日期 2006-05-10

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫