Responsive image
博碩士論文 etd-0513116-164013 詳細資訊
Title page for etd-0513116-164013
論文名稱
Title
龜山島周圍海域沉積物中微量金屬之分佈與特性
Distribution and Characteristics of Trace Metals in Sediments off Kueishan Islet
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-13
繳交日期
Date of Submission
2016-06-15
關鍵字
Keywords
總硫含量、微量金屬含量、沉積物、龜山島、熱泉
sediment, trace metals concentrations, total sulfur concentrations, hydrothermal vents, Kueishan Islet
統計
Statistics
本論文已被瀏覽 5830 次,被下載 541
The thesis/dissertation has been browsed 5830 times, has been downloaded 541 times.
中文摘要
本研究於2009年至2014年間在龜山島周圍海域採集表層沉積物及岩芯樣品,並利用感應耦合電漿發射光譜儀(ICP-OES)測定沉積物中各金屬之濃度。主要探討龜山島海底熱泉所屬海域表層及岩芯沉積物中微量金屬濃度分布,並了解沉積物微量金屬的分布特性及其受熱泉噴發之影響。
  研究結果顯示,近熱泉口站位的黏土或泥質細顆粒物質以及顆粒有機碳均明顯較遠離熱泉口的站位低。位於龜首的站位有相當高的硫含量(S%=63.2-78.1%),推測因受到熱泉噴發影響所導致,而龜尾與離熱泉口較遠之站位的硫含量則相對較低(S%=0.0-17.6%),顯示受熱泉噴發影響較小所致。
  龜山島表層沉積物中各金屬在靠近泉口站位之總濃度較低,尤以離熱泉口越遠其濃度有上升之趨勢。而近熱泉口之站位之Al/(Al+Fe+Mn) 濃度比值皆低於0.6,表示近熱泉口之站位鐵、錳可能受到熱液噴發而導致濃度增加,而造成較靠近泉口之站位的比值較低,且鐵/錳濃度比值隨離熱泉口距離而遞減。各金屬元素濃度對鋁元素之富集程度(EF)程度亦顯示各金屬在靠近熱泉活動區(H1-1-Ks9)之EF均高於自然背景值(EF > 1),而離泉口較遠之站位的富集程度則較明顯降低,除了鉛、鋅之外皆無超過自然背景值。
  由於近熱泉之岩芯之總硫含量與鐵濃度有顯著正相關,並與Al/(Al+Fe+Mn) 比值有顯著負相關,因此岩芯的總硫含量分佈可作為噴發強度變化指標。由近熱泉之岩芯總硫濃度分佈顯示,噴發強弱有幾個循循變化,岩芯Ks2之總硫濃度於1950-1956、1968-1972、1990-1992及2004-2005年有增加趨勢,並於1967-1968、1988-1990及1994-1995年間有降低現象,將其對照至岩芯Ks3及S2,岩芯Ks3之總硫濃度於1990-1991、1997-1998及2004-2005年增加,且於1989-1990及1992-1993年降低。而岩芯S2之總硫濃度則於1780-1791、1952-1956及1969-1983年時上升,且於在1810-1823、1957-1969及1992-1996年時降低。而金屬鐵及錳濃度在不同年代也有著與硫相當類似的分佈情形。由噴發指標時間變動可反應噴發強度的短期循環變化。
Abstract
This study aims to understand the distributions and characteristics of trace metals in sediments around submarine hydrothermal vents off Kueishan Island, northeastern Taiwan. In this study, surface sediments and sediment cores were collected from the study area during May - September of 2009 and June of 2014, and the concentrations of trace metals were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES).
  The results showed that the fine particles(mud, clay) and total organic carbon(TOC) of surface sediments were significantly lower at stations around the hydrothermal vents than those stations away from the vents. High total sulfur (TS) contents (63.2-78.1%) of surface sediments occurred at nearby stations of vents, presumably caused by the influence of hydrothermal activitiy. Whereas, much lower TS concentrations (0.0-17.6%) were detected at the stations far away from vents , indicating little influence of hydrothermal activitiy.
 Total concentrations of trace metals in surface sediments were lower in H1-1-H2-3 stations than in T1-1-St3 stations, determined largely form the effects of particles size and TOC. The Al / (Al + Fe + Mn) ratio increased generally with distance away from the hydrothermal vents , which was inversely related to the variations of TS and Fe/Al ratio. Meanwhile, the Fe/Mn ratio decreased with distance away from hydrothermal vents , resulted appareutly from the decrease of Fe in sediments with distance. Enrichment factors of the trace metals were elevated (>1) in these stations influeuced significantly by hydrothermal activitiy.
  Correlations were significantly positive between TS content and iron, and significantly negative between TS content and Al / (Al + Fe + Mn) ratio in cores collected from nearby vents. The TS concentration in Ks2 increased in 1950-1956, 1968-1970, 1982-1987,1990-1992 and 2004-2005, and decreased in 1967-1968, 1988-1990. and 1994-1995. The temporal variation of TS concentration in Ks3 and S2 was fairly identical with that of Ks2. The distribution of iron and manganese concentrations in different years also has similar condition with sulfur. The emission strength was apparently reflected from the temporal variation of emission indices.
目次 Table of Contents
目錄
論文審定書………………………………………………………….....................…........i
致謝..................................................................................................................iii
中文摘要...........................................................................................................iv
英文摘要...........................................................................................................vi
目錄..................................................................................................................viii
圖目錄...............................................................................................................x
表目錄...............................................................................................................xiii

第一章 前言.......................................................................................................1
第二章 研究區域
2.1龜山島周圍海域...................................................................................5
第三章 研究材料及方法
3.1採樣方法.................................................................................................8
3.2實驗方法.................................................................................................9
3.3 主成分分析法......................................................................................17
第四章 結果
4.1表層沉積物之顆粒粒徑和有機碳、總硫含量分佈……………...18
4.1-1 表層沉積物之顆粒粒徑分布…………………………………....18
4.1-2 表層沉積物之總硫含量及有機碳分布…………………………21
4.2表層沉積物中各金屬(鋁、鎂、鐵、錳、鋅、銅、鉛、鈷、鎳)之濃度分佈……………………………………………………………………22
4.2-1 表層沉積物之鋁、鎂、鐵、錳濃度分布……………………....22
4.2-2 表層沉積物之鋅、銅、鉛、鎳、鈷濃度分布…………………25
4.3龜山島周圍海域岩芯………………………………………………29
4.3-1 龜山島海域岩芯定年分析………………………………………29
4.3-2 靠近熱泉口之岩芯(Ks2、Ks3、S2)……………………………33
4.3-2-1 岩芯 Ks2………………………………………………………33
4.3-2-2 岩芯 Ks3…………………………………………………..38
4.3-2-3 岩芯 S2………………………………..…………………..43
第五章 討論.........................................................................................................47
5.1表層沉積物之粒徑對金屬分布之影響、顆粒有機碳及總硫含量……………………………………………………………….47
5.1-1 表層沉積物之粒徑分布……………………………………..47
5.1-2 表層沉積物之顆粒有機碳分布………………………….….47
5.1-3 表層沉積物硫含量之分布……………………………….….48
5.2 熱泉噴發對金屬分佈的影響…………………………….……51
5.2-1以表層沉積物之鐵/錳(Fe/Mn) 和Al/(Al+Fe+Mn) 比值評估熱泉噴發之影響………………………………………………...….51
5.2-2 表層沉積物金屬元素之富集程度(EF)……………………..58
5.2-3 可萃取金屬分佈之評估…………………………………….64
5.2-4表層沉積物之主成分分析(PCA)及因子分析(FA)………....65
5.3 龜山島岩芯沉積物之金屬濃度分布及特性………………....68
5.3-1岩芯 Ks2………………………………………………………68
5.3-2岩芯 Ks3……………………………………………….…….74
5.3-3岩芯 S2…………………………………………………...….80
第六章 結論........................................................................................................87
參考文獻
中文部分......................................................................................................89
英文部分......................................................................................................91
參考文獻 References
參考文獻
中文部份:
羅聖宗、陳民本,1991。海床沈積物的採樣,海洋儀器專題。科儀新知,第12卷,第62-70頁。
歐育憲,2000。土壤中重金屬汙染物之生物有效性意義研究。逢甲大學環境工程與科學研究所碩士論文。共93頁。
蔡義本、馮至津、邱哲明、廖鴻彬,1975。新店-宜蘭地區微震活動與斷層之關係。台灣石油地質,第12期,第149-167頁。
蔡守文,1989。台灣海峽沉積物鉛-210定年法之應用。國立中山大學海洋地質及化學研究所碩士論文,共81頁。
黃舒瑜,2003。土壤重金屬0.1 N HCl 萃取量與全量濃度之相關性研究。逢甲大學環境工程與科學研究所碩士論文,共191頁。
童翔新、歐育憲、葉亦宏、陳欽昭,2000。「土壤中重金屬汙染物之生物有效性意義研究」,第十五屆廢棄物處理技術研討會論文集。
張筱佩,2011。台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵。國立中央大學地球物理研究所碩士論文,共112頁。
張郇生,1991。從龜山島的岩相看大地構造。經濟部中央地質調查所特刊第五號,地292頁。
許峻嵐,2000。高屏海域沉積物重金屬之分布與污染史。國立中山大學海洋地質及化學研究所碩士論文,共133頁。
莊文星,1992。台灣之火山活動與火成岩,國立自然科學博物館,共300頁。
陳鎮東,2001。龜山島海底熱泉微量金屬成分及影響是否擴及電廠周圍海域之探討研究報告。台灣電力公司環境保護處,共178頁。
呂佳純,2006。高屏近岸海域與潟湖沉積物汞及砷之分佈與物種特徵。國立中山大學海洋地質及化學研究所碩士論文,共121頁。
呂愛琳,2001。側向傳輸與海底熱泉對南沖繩海槽斜坡錳分佈之影響。國立中山大學海洋地質及化學研究所碩士論文,共90頁。
李昭興,2001。東北海域海底火山及熱液煙囪。地球科學園地,第18期,第6-12頁。
李昭興,2000 。我國東北角海底火山的成因及將來監測的展望。第二屆海軍與海洋研討會研討報告 ,共10頁。
李昭興,2009。孕育中的龜山海底火山。科學發展,第437期,第40-47頁。
李逸環、胡健驊,1998。宜蘭灣水團與台灣北部陸棚關係,台灣海洋學刊第三十七期第一號,89-104。
江協堂,2009。龜山島海域地質。 地球科學園地,第16卷,第10-12頁。


英文部份:
Anderson, R. F., and Schiff, S. L. (1987) Determining sediment accumulation and mixing rates using 210Pb, 137Cs and other tracers: Problems due to postdepositional mobility or coring artifacts. Can. J. Fish. Aquat. Sci. 44, 231-250.
Bach, W., Roberts, S., Vanko, D. A., Binns, R. A., Yeats, C. J., Craddock, P. R., and Humphris, S. E. (2003) Controls of fluid chemistry and complexation on rare-earth element contents of anhydrite from the Pacmanus subseafloor hydrothermal system, Manus Basin, Papua New Guinea. Mineralium Deposita 38, 916–935.
Bennet, S. A., Statham, P. J., Green, D. R. H., LeBris, N., McDermott, J. M., Prado, F., Rouxel, O. J., Von Damm, K., and German, C. R. (2011) Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50'N. Deep Sea Research 58, 922-931.
Bloom, N. S., and Crecelius, E. A. (1987) Distribution of silver, mercury, lead, copper and cadmiumin Central Peugeot Sound sediments. Marine Chemistry 21, 377-390
Boström, K., Kraaemer, T., and Gartner, S. (1973) Provoenance and accumulation rates of opaline silica, AL, Ti, Fe. Mn, Cu, Ni and Co in Pacific pelagic sediments. Chemical Geology 11, 132-148.
Boström, K., and Peterson, M.N.A. (1966) Precipitates from hydrothermal exhalations on the East Pacific Rise. Economic Geology 61, 1258-1265.
Butterfield, D. A., Nakamura, K. I., Takano, B., Lilley, M. D., Lupton, J. E., Resing, J. A., and Roe, K. K. (2011) High SO2 flux sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology 39, 803-806.
Chen, Y.-G., Wu, W.-S., Chen, C.-H., and Liu, T. -K. (2001) A date for volcanic eruption inferred from a siltstone xenolith. Quaternary Science Reviews 20, 869-873.
Chen, C. T. A., Zeng, Z. G., Kuo, F. W., Yang, B. J., and Tu, Y. Y. (2005) Tide-influenced acidic hydrothermal system offshore NE Taiwan. Chemical Geology 224, 69– 81.
Doner, V., and Lee, C. (2011) ‘Tighten regulations on deep-sea mining.’ Nature 470, 31-33.
Du, Y.-S., Zhu, Jie., Gu, S.-Z., Xu, Y.-J., and Yang, J.-H. (2007) Sedimentary geochemistry of the Cambrian-Ordovician cherts: Implication on archipelagic ocean of North Qilian orogenic belt. Science in China Series D: Earth Sciences 50, 1628-1644.
Fang, T. H., Li, J. Y., Feng, H. M., and Chen, H. Y. (2009) Distribution and contamination of trace metals in surface sediments of the East China Sea. Marine Environmental Research 68, 178-187.
German, C. R., Hergt, J., Palmer, M. R., and Edmond J. M. (1999) Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21∘N East Pacific Rise. Chemical Geology 155. 65-75.
Green-Ruiz, C., and Paez-Osuna, F. (2001) Heavy metal anomalies in lagoon sediments related to intensive agriculture in Altata-Ensenada del Pabellon coastal system (SE Gulf of California). Environment International. 26, 265-273.
Hannington, M. D., DeRonde, C. E. J., and Petersen, S. (2005) Sea-floor tectonics and submarine hydrothermal systems. 100th Anniversary Volume of Economic Geology, 111-142.
Hung, J.-J., and Hsu, C. L. (2004) Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin. 49, 986-998.
Isani, C., Hung, J.-J., Peng, S.-H., Tseng, Li.-Chun., Ho, Tung.-Yuan., and Hwang, Jiang.-Shiou. (2014) Comparison of metal accumulation in the azooxanthellate scleractinian coral (Tubastraea coccinea) from different polluted environments. 85, 648-658.
Kemp, A. L. W., Thomas, R. L., Dell, C. I., and Jaquet, J. -M. (1976) Cultural impact on the geochemistry of sediments in lake Erie. Journal of the Fisheries Research Board of Canada. 33, 440-462.
Mirlean, A. W., Andrus, V. E., Baisch, P., Griep, G., and Casartelli, M. R. (2003) Arsenic pollution in Patos Lagoon estuarine sediments, Brazil. Marine Pollution Bulletin. 46, 1480-1484.
Murray, J. W. (1979) Iron oxides. In: Burns, R.G., (Ed.), Marine Minerals. Mineralogical Society of America, Washington, 44-98.
Peng, S.-H., Hung, J.-J., and Hwang, J. S. (2011) Bioaccumualtion of trace metals in the submarine hydrothermal vent crab Xenograpsus testudinatus off Kueishan Island, Taiwan.. Marine Pollution Bulletin, 63:306-401.
Pichler, T., and Veizer, J. (1999) Precipitation of Fe(III) oxyhydroxide deposits from shallow-water hydrothermal fluids in Tutum Bay, Ambitle Island, Papua New Guinea. Chemical Geology 162, 15– 31.
Price, R., and Pichler, T. (2005) Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chemical Geology 224, 122– 135.
Price, R., Savov, I., Friedrich, B. P., Buhring, S. I., Amend, J., and Pichler, T. (2013) Processes influencing extreme As enrichment in shallow-sea hydrothermal fluids of Milos Island, Greece. Chemical Geology 348, 15– 26.
Price, R. (2008) Biogeochemical Cycling of Arsenic in the Marine Shallow-water Hydrothermal System of Tutum Bay, Ambitle Island, Papua New Guinea. ProQuest, 20– 159.
Sedwick, P., and Stuben, D. (1996) Chemistry of shallow submarine warm springs in an arc-volcanic setting: Vulcano Island, Aeolian Archipelago,Italy. Marine Chemistry 53, 146-161.
Tang, T. Y., Hsueh, Y., Yang, Y. J., and Ma, J. C. (1999) Continental Slope Flow Northeast of Taiwan. Oceanogr 29, 1353–1362.
Taylor, S. R. (1964) Abundance of chemical elements in the continrntal crust: a new table. Geochimica et Cosmochimica Acta. 28, 1273-1285.
Teng, L. S. (1996) Extensional collapse of the north Taiwan mountain belt. Geology 24, 949-952.
Varnavas, S. P., and Cronan, D. S. (1988) Arsenic , antimony and bismuth in sediments and waters from the Santorini hydrothermal field, Greece. Chemical Geology 67, 295-305.
Vidal, V. M. V., Vidal, F. V., Isaacs, J. D., and Young, D. R. (1978) Coastal submarine hydrothermal activity off northern Baja California. Journal of Geophys Research 83, 1757-1774.
Yu, Z. H., Gao, Y. H., Zhai, S. K., and Liu, F. F. (2012) Resolving the hydrothermal signature leaching studies of sediment from the middle of the Okinawa Trough. Science China (Earth Sciences) 55, 665-674.
Yu, H . S., and Hong, E. (1992) “Physiographic characteristics of the continental margin, northeast Taiwan”. Terrestrial Atmospheric and Oceanic Sciences, 3(3):419-434.
Yamamoto, K. (1987) Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes. Sediment Geology 52, 65-108.
Yang, H. S., Nozaki, Y., Sakai, H., Nagaya, Y., and Nakamura, K. (1986) Natural and man-made radionuclide distributions in Northwest Pacific deepsea sediments: rates of sedimentation, bioturbation and 226Ra migration. Geochem. J. 20, 29-40.
Zeng, Z., Chen, C. T. A., Yin, X., Zhang, X., Wang, X., Zhang, G., Wang, X., and Chen, D. (2011) Origin of native sulfur ball from the Kueishantao hydrothermal field offshore northeast Taiwan: Evidence from trace metal and rare earth element composition. Journal of Asian Earth Sciences40, 661-667.
Zhao, Y. Y. (1985) Some geochemical patterns of shelf sediments of the China Seas. Chin. J. Limnology and Oceanography 2, 200-211.
Zhao, Y. Y., and Yan, M. C. (1993) Geochemical record of the climate effect in sediments of the China Shelf Sea. Chemical Geology 107, 267-269.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code