Responsive image
博碩士論文 etd-0524107-154002 詳細資訊
Title page for etd-0524107-154002
論文名稱
Title
微波被動式元件之寬頻修正T型等效電路模型
Broadband Modified T-Equivalent Circuit Model for Microwave Passive Components
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-05-22
繳交日期
Date of Submission
2007-05-24
關鍵字
Keywords
模型萃取法、寬頻模型化、修正T型等效電路
Model Extraction Method, Broadband Modeling, Modified T-Equivalent Circuit
統計
Statistics
本論文已被瀏覽 5718 次,被下載 2107
The thesis/dissertation has been browsed 5718 times, has been downloaded 2107 times.
中文摘要
本論文提出兩種模型萃取方法,直接萃取法及適應性有理近似法,可有效建構寬頻的修正T型等效電路。此二方法利用模型簡化及分解技巧以大幅簡化萃取方法的複雜度及所需運算,使得任何微波雙埠被動元件可用所提之全分析性方法予以模型化。相較於其他寬頻模型化方法,修正T型等效電路可用更為少數之元件加以建構,此一特點歸功於分解後之電路具有明顯的諧振響應可資辨識,以利於決定所需元件所致。值得一提的是修正T型等效電路可用擴充階層式諧振器的層數以達成寬頻模型化但模型仍為單級電路之目的。文後以數個低溫共燒陶瓷及有機基板內埋型式的濾波器和電感器做為實例,以驗證萃取方法所得之修正T型等效電路確實有寬頻及準確的特性。
Abstract
This dissertation presents two kinds of model extraction approaches, direct extraction and adaptive rational approximation methods, for establishing a novel broadband model, the modified T-equivalent circuit. Both methods skillfully use the simplified and decomposed schemes to dramatically reduce the complexity of modeled parameter extraction procedures and the needed computational efforts. As a result, any two-port microwave passive components or networks can be modeled efficiently using the proposed fully-analytical mathematic extraction formulations. In comparison with other broadband modeling techniques, the modified T-equivalent circuit can be constructed with much less elements. Model with such a compact character attributes the frequency responses of two decomposed circuits having obvious resonances to be identified and utilized for constituting equivalent circuits using only necessary elements. It is worth to note that the modified T-equivalent circuit model can utilize two expandable multilayer resonators to achieve very wide bandwidth but maintain model still in a single-stage equivalent circuit. Several successful modeling examples verified on the LTCC- and organic- embedded type of band-pass filters and inductors, the most crucial passive components to affect the performances of RF communication system, demonstrate the presented model with the superior character of accuracy and broadband indeed.
目次 Table of Contents
1 Introduction 1
1.1 Motivation 1
1.2 Equivalent Circuits and Model Extraction Techniques 3
1.3 Model-Based Approaches and Automatic Equivalent-Circuit Generation 7
1.4 Currently Available Modeling Tools 10
1.4.1 ADS Modeling Tool 10
1.4.2 SIDEA 12
1.4.3 IdEM 13
1.4.4 Nexxim Modeling Tool 13
1.5 Modeling Considerations 16
1.5.1 Stability 16
1.5.2 Passivity 17
2 Modified T-Equivalent Circuit 19
2.1 Microwave Network Structure 19
2.2 Model Simplification and Decomposition 23
2.3 Useful Informations for Extracting Equivalent-Circuit Parameters 25
2.3.1 Resonant Frequencies 25
2.3.2 Quality Factors 27
2.3.3 Interpolation and Extrapolation of Measured Data 27
3 LTCC Band-Pass Filter Modeling 30
3.1 Modified T-Equivalent Circuit 31
3.2 Direct Extraction Method 38
3.3 Adaptive Rational Approximation Method 43
3.4 Modeled Results and Discussion 49
4 Embedded Spiral Inductor Modeling 59
4.1 Spiral Inductor Embedded in Organic Substrate 59
4.2 Extraction of Modified T-Equivalent Circuit Parameters 61
4.3 Scalable Technique 67
4.4 Modeled Results and Discussion 67
5 Comparisons with Currently Available Modeling Tools 75
5.1 Advantages and Disadvantages of Modified T-Equivalent Circuit 75
5.2 Modeling Examples for Comparison 76
5.3 Some Suggestions on Extracting Modified T-Equivalent Circuit 101
6 Conclusion 102
References 104
Vita 114
參考文獻 References
[1] D. M. Pozar, Microwave Engineering, NJ: John Wiley & Sons Inc., 1998.
[2] J. Crols, P. Kinget, J. Craninckx, and M. Steyaert, “An analytical model of planar inductors on lowly doped silicon substrates for high frequency analog design up to 3 GHz,” in VLSl Circuits Symp. Dig., 1996, pp. 28-29.
[3] S. Kobayashi and K. Saito, “A miniaturerized ceramic bandpass filter for cordless phone systems,” in IEEE MTT-S Int. Microwave Symp. Dig., 1995, pp. 391-394.
[4] O. H. Murphy, K. G. McCarthy, C. J. P. Delabie, A. C. Murphy, and P. J. Murphy, “Design of multiple-metal stacked inductors incorporating an extended physical model,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2063-2072, June 2005.
[5] K.-Y. Tong and C. Tsui, “A physical analytical model of multilayer on-chip inductors,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1143-1149, Apr. 2005.
[6] H. T. Hsu, Z. Zhang, K. A. Zaki, and A. E. Atia, “Parameter extraction for symmetric coupled resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2971-2978, Dec. 2002.
[7] S. Wang, W. G. Odendaal, and F. C. Lee, “Extraction of parasitic parameters of EMI filters using scattering parameters,” in Proc. IEEE Industry Applications Society Conf., 2004, pp. 2672-2678.
[8] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: passive reduced-order interconnect macromodeling algorithm,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 17, pp. 645-654, Aug. 1998.
[9] A. G. Lamperez, S. L. Romano, M. S. Palma, and T. K. Sarkar, “Efficient electromagnetic optimization of microwave filters and multiplexers using rational models,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 508-521, Feb. 2004.
[10] A. G. Lamperez, S. L. Romano, M. S. Palma, and T. K. Sarkar, “Fast direct electromagnetic optimization of a microwave filter without diagonal cross-couplings through model extraction,” in Proc. European Microwave Conf., 2003, pp. 1361-1364.
[11] L. A. Grqda and R. Regla, “Modeling of planar microwave filters,” in Proc. European Microwave Conf., 2003, pp. 1051-1054.
[12] F. M. Pitschi, J. E. Kiwitt, C. C. W. Ruppel, and K. C. Wanger, “Accurate modeling and simulation of SAW RF filters,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 2009-2012.
[13] J. H. Kim and M. Swaminathan, “Modeling of multilayered power distribution planes using transmission matrix method” IEEE Trans. Adv. Packag., vol. 25, pp. 189-199, May 2002.
[14] S.-G. Mao, M.-S. Wu, Y.-Z. Chueh, and C.-H. Chen, “Modeling of symmetric composite right/left-handed coplanar waveguides with applications to compact bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 3460-3466, Nov. 2005.
[15] A. Ciccazzo, G. Greco, and S. Rinaudo, “A new scalable SPICE model for spiral inductors in substrate with buried layer,” in Proc. Radio and Wireless Conf., 2003, pp. 345-348.
[16] M. Dehan, J. P. Raskin, I. Huynen, and D. V. Janvier, “An improved multiline analysis for monolithic inductors,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 100-108, Jan. 2005.
[17] S. Dalmia, S. H. Min, and M. Swaminathan, “Modeling RF passive circuits using coupled lines and scalable models,” in Proc. 51st Electron. Comp. Technol. Conf., 2001, pp. 816-823.
[18] L. Zhu and K. Wu, “Accurate circuit model of interdigital capacitor and its application to design of new quasi-lumped miniaturized filters with suppression of harmonic resonance,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 347-356, Mar. 2000.
[19] S.-G. Mao, H.-K. Chiou, and C.-H. Chen, “Modeling of lumped-element coplanar-stripline low-pass filter,” IEEE Microw. Guided Wave Lett., vol. 8, pp. 141-143, Mar. 1998.
[20] J. S. Parkt, J. H. Kimt, J. H. Leet, S. H. Kimt, and S. H. Myung, “A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 417-420.
[21] A. Sertbas, “A CAD algorithm for RF/microwave interconnect model,” Microwave Journal, vol. 48, pp. 84 - 96, Mar. 2005.
[22] C.-P. Yue and S.-S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron Devices, vol. 47, pp. 560-568, Mar. 2000.
[23] Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J. O. Plouchart, R. A. Wachnik, T. J. King, and C. Hu, “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE J. Solid-State Circuits, vol. 38, pp. 419-426, Mar. 2003.
[24] B. L. Ooi, D. X. Xu, P. S. Kooi, and F. J. Lin, “An improved prediction of series resistance in spiral inductor modeling with eddy-current effect,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2202-2206, Sep. 2002.
[25] N. A. Talwalkar, C. P. Yue, and S.-S. Wong, “Analysis and synthesis of on-chip spiral inductors,” IEEE Trans. Electron Devices, vol. 52, pp. 176-182, Feb. 2005.
[26] F. Rotella, B. K. Bhattacharya, V. Blaschke, M. Matloubian, A. Brotman, Y. Cheng, R. Divecha, D. Howard, K. Lampaert, P. Miliozzi, M. Racanelli, P. Singh, and P. J. Zampardi, “A broad-band lumped element analytic model incorporating skin effect and substrate loss for inductors and inductor like components for silicon technology performance assessment and RFIC design,” IEEE Trans. Electron Devices, vol. 52, pp. 1429-1441, July 2005.
[27] S. Mei and Y. I. Ismail, “Modeling skin and proximity effects with reduced realizable RL circuits,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 437-447, Apr. 2004.
[28] X. Sun, G. Carchon, and W. De Raedt, “An optimized model of skin effect for on-chip spiral inductors,” in Proc. IEEE Radio-Frequency Integrated Circuit Symp., 2004, pp. 445-448.
[29] F. M. Rotella, V. Blaschke, and D. Howar, “A broad-band scalable lumped-element inductor model using analytic expressions to incorporate skin effect, substrate loss, and proximity effect,” in Proc. IEEE Electron Devices Int. Meeting, 2002, pp. 471-474.
[30] J.-C. Guo and T.-Y. Tan, “A broadband and scalable model for on-chip inductors incorporating substrate and conductor loss effects,” in Proc. IEEE Radio-Frequency Integrated Circuit Symp., 2005, pp. 593-596.
[31] M.-T. Yang, T.-J. Yeh, W.-C. Lin, H.-M. Hsu, P.-C. Ho, Y.-J. Wang, Y.-T. Chia, and D.-L. Tang, “Characterization and model of high quality factor and broadband integrated inductor on Si-substrate,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1283-1286.
[32] M. Fujishima and J. Kinof, “Accurate subcircuit model of an on-chip inductor with a new substrate network,” in VLSl Circuits Sym. Dig., 2004, pp. 376-379.
[33] B. Lakshminarayanan, H. C. Gordon, and T. M. Weller, “A substrate-dependent CAD model for ceramic multilayer capacitors,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1687-1963, Oct. 2000.
[34] J. Zheng, V. K. Tripathi, and A. Weisshaar, “Characterization and modeling of multiple coupled on-chip interconnects on silicon substrate,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1733-1739, Oct. 2001.
[35] B. Rejaei, J. L. Tauritz, and P. Snoeij, “A predictive model for Si-based circular spiral inductors,” in Proc. Silicon Monolithic Integrated Circuits in RF Systems Topical Meeting, 1998, pp. 148-154.
[36] M. Kang, J. Gil, and H. Shin, “A simple parameter extraction method of spiral on-chip inductors,” IEEE Trans. Electron Devices, vol. 52, pp. 1-6, Feb. 2005.
[37] A. Watson, P. Francis, K. Hwang, and A. Weisshaar, “Wide-band distributed modeling of spiral inductors in RFICs,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1011-1014.
[38] W. Ni, X. Yuan, Y. V. Tretiakov, R. Groves, and L. E. Larson, “Design and modeling of a high-Q on-chip hairpin inductor for RFIC applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 33-36.
[39] N. Damavandi and S. S. Naeini, “Electromagnetic optimization of microwave filters using an efficient model parameter extraction,” IEE Proc. Microw. Antennas Propag., vol. 151, pp. 417-424, Oct. 2004.
[40] I. A. Eshrah, A. A. Kishk, A. B. Yakovlev, W. G. Glisson, and C. E. Smith, “Analysis of waveguide slot-based structures using wide-band equivalent-circuit model,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 2691-2696, Dec. 2004.
[41] K. Y. Lee, S. Mohammadi, P. K. Bhattacharya, and L. P. B. Katehi, “Compact models based on transmission-line concept for integrated capacitors and inductors,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 4141-4148, Dec. 2006.
[42] C.-P. Yue, C. Ryu, J. Lau, T.-H. Lee, and S.-S. Wong, “A physical model for planar spiral inductors on silicon,” in Proc. IEEE Electron Devices Int. Meeting, 1996, pp. 155-158.
[43] T.-L. Wu, C.-C. Kuo, H.-C. Chang, and J.-S. Hsieh, “A novel systematic approach for equivalent model extraction of embedded high-speed interconnects in time domain,” IEEE Trans. Electromagnetic Compatibility, vol. 45, pp. 493-501, Aug. 2003.
[44] M.-H. Chiou and K. Y. J. Hsu, “A new wideband modelling technique for spiral inductors,” IEE Proc. Microw. Antennas Propag., vol. 151, pp. 115-120, Apr. 2004.
[45] S. G. Talocia, E G. Canavero, I. S. Stievano, and I. A. Maio, “Circuit extraction via time-domain vector fitting,” in IEEE Electromagnetic Compatibility Int. Symp., 2004, pp. 1005-1010.
[46] X. Xu and R. Sloan, “Distributed coupling model of the dielectric resonator to microstrip line,” IEEE Microw. Guided Wave Lett., vol. 9, pp. 348-350, Sep. 1999.
[47] T. Mangold and P. Russer, “Full-wave modeling and automatic equivalent-circuit generation of millimeter-wave planar and multilayer structures,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 851-858, Jun. 1999.
[48] K. M. C. Branch, J. Morsey, A. C. Cangellaris, and A. E. Ruehli, “Physically consistent transmission line models for high-speed interconnects in lossy dielectrics” IEEE Trans. Adv. Packag., vol. 25, pp. 129-135, May 2002.
[49] Z. Qi, H. Yu, P. Liu, S. X.-D. Tan, and L. He, “Wideband passive multiport model order reduction and realization of RLCM circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25, pp. 1496-1509, Aug. 2006.
[50] N. Wong., V. Balakrishnan, C. K. Koh, and T. S. Ng, “Two algorithms for fast and accurate passivity-preserving model order reduction,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 25, pp. 2062-2075, Oct. 2006.
[51] S.-H. Lee, T.-Y. Huang, and R.-B. Wu, “Fast waveguide eigenanalysis by wide-band finite-element model-order reduction,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2552-2558, Aug. 2005.
[52] J.-M. Wang, C.-C. Chu, Q. Yu, and E.-S. Kuh, “On projection-based algorithms for model-order reduction of interconnects,” IEEE Trans. Circuits Syst. І: Fundam. Theory Appl., vol. 49, pp. 1563-1585, Nov. 2002.
[53] T. Wittig, I. Munteanu, R. Schuhmann, and T. Weiland, “Two-step lanczos algorithm for model order reduction,” IEEE Trans. Magnetics, vol. 38, pp. 673-676, July 2002.
[54] K. Krohne and R. Vahldieck, “On the application of model-order reduction in the fast and reliable optimization of microwave filters and diplexers,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 2285-2291, Sept. 2004.
[55] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing analysis,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 9, no. 4, pp. 352-366, Apr. 1990.
[56] P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Padé approximation via the lanczos process,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 14, no. 5, pp. 639-649, May 1995.
[57] J. R. Phillips, L. Daniel, and L. M. Silveira, “Guaranteed passive balancing transformations for model order reduction,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 8, pp. 1027-1041, Aug. 2003.
[58] S. Koziel, J. W. Bandler, and K. Madsen, “Theoretical justification of space-mapping-based modeling utilizing a database and on-demand parameter extraction,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 4316-4322, Dec. 2006.
[59] K.-L. Wu, Y.-J. Zhao, J. Wang, and M. K. K. Cheng, “An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 393-402, Jan. 2004.
[60] M. A. Ismail, S. A. Panariello, Y. Wang, and M. Yu, “EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 386-392, Jan. 2004.
[61] K.-L. Wu, R. Zhang, M. Ehlert, and D.-G. Fang, “An explicit knowledge-embedded space mapping technique and its application to optimization of LTCC RF passive circuits,” IEEE Trans. Compon. Packag. Technol., vol. 26, pp. 399-406, June 2003.
[62] M. H. Bakr, J. W. Bandler, N. Georgieva, and K. Madsen, “A hybrid aggressive space-mapping algorithm for EM optimization,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2440-2449, Dec. 1999.
[63] S. Koziel and J. W. Bandler, “Space-mapping optimization with adaptive surrogate model,” IEEE Trans. Microwave Theory Tech., vol. 55, pp. 541-547, Mar. 2007.
[64] M. H. Bakr, J. W. Bandler, K. Madsen, J. R. S. Ernesto, and J. Søndergaard, “Space-mapping optimization of microwave circuits exploiting surrogate models,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 2297-2306, Dec. 2000.
[65] G. Pepe, F. J. Gortz, and H. Chaloupka, “Sequential tuning of microwave filters using adaptive models and parameter extraction,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 22-31, Jan. 2005.
[66] P. Harscher and R. Vahldieck, “Automated computer-controlled tuning of waveguide filters using adaptive network models,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2015-2130, Nov. 2001.
[67] Y. Ding, K.-L. Wu, and D.-G. Fang, “A Broad-band adaptive-frequency-sampling approach for microwave-circuit EM simulation exploiting stoer–bulirsch algorithm,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 928-934, Nov. 2003.
[68] J. D. Geest, T. Dhaene, N. Fache, and D. D. Zutter, “Adaptive CAD-model building algorithm for general planar microwave structures,” IEEE Trans. Microwave Theory Tech., vol. 9, pp. 1801-1809, Sept. 1999.
[69] R. Lehmensiek and P. Meyer, “Creating accurate multivariate rational interpolation models of microwave circuits by using efficient adaptive sampling to minimize the number of computational electromagnetic analyses,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1419-1430, Sept. 2001.
[70] S. F. Peik, R. R. Mansour, and Y. L. Chow, “Multidimensional Cauchy method and adaptive sampling for an accurate microwave circuit modeling,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2364-2371, Dec. 1998.
[71] I. Timmins and K. L. Wu, “An efficient systematic approach to model extraction for passive microwave circuits,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1565-1573, Sept. 2000.
[72] K. L. Choi and M. Swaminathan, “Development of model libraries for embedded passives using network synthesis,” IEEE Trans. Circuits Syst.Ⅱ, Analog Digit. Signal Process, vol. 47, pp. 249-260, Apr. 2000.
[73] R. Neumayer, A. Stelzer, F. Haslinger, and R. Weigel, “On the synthesis of equivalent-circuit models for multiports characterized by frequency-dependent parameters,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2789-2796, May. 2002.
[74] G. Antonini, “SPICE equivalent circuits of frequency-domain responses,” IEEE Trans. Electromagn. Compat., vol. 45, pp. 502-512, Aug. 2003.
[75] B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Del., vol. 14, pp. 1052-1061, July 1999.
[76] R. Gao, Y. S. Mekonnen, W. T. Beyene, and S. A. Jose, “Black-box modeling of passive systems by rational function approximation,” IEEE Trans. Adv. Packag., vol. 28, pp. 209-215, May 2005.
[77] R. Araneo, “Extraction of broad-band passive lumped equivalent circuits of microwave discontinuities,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 393-401, Jan. 2006.
[78] B. Gustavsen and A. Semlyen, “Enforcing passivity for admittance matrices approximated by rational functions,” IEEE Trans. Power Systems, vol. 16, pp. 97-104, Feb. 2001.
[79] M. Kahrizi, S. N. Safieddin, S. K. Chaudhuri, and R. Sabry, “Computer diagnosis and tuning of RF and microwave filters using model-based parameter estimation,” IEEE Trans. Circuits Syst. І: Fundam. Theory Appl., vol. 49, pp. 1263-1270, Sep. 2002.
[80] A. Dounavis, R. Achar, and M. Nakhla, “A general class of passive macromodels for lossy multiconductor transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1686 -1696, Oct. 2001.
[81] E. Stephen and F. Sussman, “Inductor-capacitor one-ports and inverse eigenvalue problems,” IEEE Trans. Circuits Systems, vol. 28, pp. 850-853, Apr. 2000.
[82] S. E. F. Sussman and H. J. Orchard, “Canonic structures for lossless one-ports,” IEEE Trans. Circuits Systems, vol. 27, pp. 772-778, Apr. 1980.
[83] A. Lamecki, P. Kozakowski, and M. Mrozowski, “Efficient implementation of the Cauchy method for automated CAD-model construction,” IEEE Microw. Guided Wave Lett., vol. 13, pp. 268-270, July 2003.
[84] R. J. Cameron, “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1-10, Jan. 2003.
[85] R. J. Cameron, “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 433 -442, Apr. 1999.
[86] P. Harscher, E. Ofli, R. Vahldieck and S. Amari, “EM-simulator based parameter extraction and optimization technique for microwave and millimeter wave filters,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 1113-1116.
[87] S. Sarkar, N. Papageorgiou, R. Ratap, S. Pinel, J. Laskar, and G. S. May, “Novel modeling and layout optimization technique for highly compact planar bandpass filters on LCP,” in Proc. European Microwave Conf., 2004, pp. 1381-1384.
[88] A. H. Zaabab, Q. J. Zhang, and M. Nakhla, “A neural network modeling approach to circuit optimization and statistical design,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 1349-1358, June 1995.
[89] Advanced Design System (ADS) User's Guide, Agilent Technologies Corp., Palo Alto, CA, USA, 2005.
[90] Signal Integrity Design Assistants (SIDEA) User's Guide, Optimal Corp., San Jose, CA, USA, 2005.
[91] Identification of Electrical Macromodels (IdEM) User's Guide, EMC Group, Politecnico di Torino, Italy, 2005.
[92] Nexxim User’s Guide, Ansoft Corp., Pittsburgh, PA, USA, 2006.
[93] T.-S. Horng, J.-M. Wu, L.-Q. Yang, and S.-T. Fang, “A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2327-2333, Dec. 2003.
[94] T.-S. Horng, Y.-S. Tsai, C.-T. Chiu, S.-M. Wu, C.-P. Hung, R. Chen, and C.-H. Chu, “Development of high-Q embedded passive library for RF-SOP module applications,” in Proc. 55th Electron. Comp. Technol. Conf., 2005, pp. 1590-1593.
[95] T.-S. Horng, J.-K. Jau, C.-H. Huang, and F.-Y. Han, “Synthesis of a super broadband model for on-chip spiral inductors,” in Proc. IEEE Radio-Frequency Integrated Circuit Symp., 2004, pp. 453-456.
[96] C.-T. Chiu, T.-S. Horng, H.-L. Ma, S.-M. Wu, and C.-P. Hung, “Super broadband lumped models for embedded passives,” in Proc. Electron. Comp. Technol. Conf., 2004, pp. 1104-1107.
[97] T.-S. Horng, J.-K. Jau, Y.-S. Tsai, and C.-S. Huang, “A decomposition and reconstruction scheme for broadband modeling of on-chip passive components using the modified T-equivalent circuit topology,” in Proc. IEEE Radio-Frequency Integrated Circuit Symp., 2005, pp. 299-302.
[98] T.-S. Horng, J.-K. Jau, and Y.-S. Tsai, “Equivalent circuit for broadband modeling of on-chip spiral inductors up to millimetre-wave frequencies,” Electron. Lett., vol.41, pp. 838-840, July 2005.
[99] Y.-S. Tsai and T.-S. Horng, “Modeling of Hi-Q embedded inductors for RF-SOP applications,” in Proc. VLSI Design, Automation and Test Symp., 2006, pp. 299-302.
[100] Y.-S. Tsai and T.-S. Horng, “A broadband single-stage equivalent circuit for modeling LTCC bandpass filters,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 4412-4421, Dec. 2006.
[101] R. S. Adve, T. K. Sarkar, S. M. Rao, E. K. Miller, and D. R. Pflug, “Application of the Cauchy method for extrapolating/interpolating narrow-band system responses,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 837-845, May 1997.
[102] K. Kottapalli, T. K. Sarkar, Y. Hua, E. K. Miller, and G. J. Burke, “Accurate computation of wide-band response of electromagnetic systems utilizing narrow-band information,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 682-687, Apr 1991.
[103] S. H. Lee, S. Min, D. Kim, S. Dalmia, W. Kim, V. Sundaram, S. Bhattacharya, G. White, F. Ayazi, J.S. Kenney, M. Swaminathan, and R.R. Tummala, “High performance spiral inductors embedded on organic substrates for SOP applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 2229-2232.
[104] S. Dalmia, J. M. Hobbs, V. Sundaram, M. Swaminathan, S. H. Lee, F. Ayazi, G. White, and S. Bhattacharya, “Design and optimization of high-Q RF passives on SOP based organic substrates,” in Proc. 52nd Electron. Comp. Technol. Conf., 2002, pp. 495-503.
[105] C.-J. Chaol, S.-C. Wong, C.-J. Hsu, M.-J. Chenl, and L.-Y. Chiu, “Characterization and modeling of on-chip spiral inductors for Si RFICs”,” IEEE Trans. Semiconductor Manufacturing, vol. 21, pp. 19-29, Feb. 2002.
[106] J. Gil and H. Shin, “A simple wide-band on-chip inductor model for silicon-based RF ICs,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2023-2028, Sep. 2003.
[107] H.-S. Song and Y.-S. Lee, “A miniaturized 2.4 GHz band multi-layer bandpass filter using capacitively loaded quarter-wavelength slow-wave resonator,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 515-518.
[108] C.-W. Tang, Y.-C. Lin, and C.-Y. Chang, “Realization of transmission zeros in combline filters using an auxiliary inductively coupled ground plane,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2112-2118, Oct. 2003.
[109] C.-W. Tang, “Harmonic-suppression LTCC filter with the step impedance quarter-wavelength open stub,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 2, pp. 617-624, Feb. 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code