Responsive image
博碩士論文 etd-0530115-213748 詳細資訊
Title page for etd-0530115-213748
論文名稱
Title
濁水溪口6,000年來沉積系統的演變
The Evolution of the Depositional System at the Zhuoshui River Mouth since 6,000 BP.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-05-29
繳交日期
Date of Submission
2015-06-30
關鍵字
Keywords
岩心、粒徑分佈、AMS14C定年、濁水溪、海平面、沉積系統演變
grain size distribution, core, Zhuoshui River, depositional system, sea level, AMS14C dates
統計
Statistics
本論文已被瀏覽 5906 次,被下載 1030
The thesis/dissertation has been browsed 5906 times, has been downloaded 1030 times.
中文摘要
濁水溪位於台灣島西部平原,屬亞熱帶季風氣候區域。因台灣處於板塊交界帶地形陡峭且地體構造活動頻繁,每年受季風、豪雨及颱風事件侵襲影響,使濁水溪輸出大量沉積物進入台灣海峽,平均每年輸沙量達約54*〖10〗^6公噸。儘管如此,但因豐、枯水季沉積物供應速率不穩定、且濁水溪出海口屬於中潮差 (平均潮差2.7m) 的海岸環境,使細粒沉積物在出海口處不易保存下來。
根據前人研究顯示6,000年以來相對海平面變動不大,因此本研究將鎖定此海水面相對穩定時期,探討如前述濁水溪口在獨特動力作用下沉積環境演進的過程。本研究透過國立中山大學海岸地質學實驗室於2010年7月位於濁水溪河口北JRD-N (120°18’07.90E, 23°54’11.08N)、南JRD-S (120°14’26.47E, 23°49’56.70N)各鑽取總長約 100 m的岩心,以及2014年5月於現生濁水溪口,使用震盪式岩心儀鑽取6孔長度約50 cm短岩心。以現代做為通往過去的鑰匙,將現生環境沉積粒徑、總有機碳含量及有孔蟲分布資料做為指標,對比岩心相同的參數並佐以AMS14C定年資料、正交經驗函數分析等,以較客觀的方式描述全新世6,000年以來濁水溪口沉積系統演變。
結合現代與過去的量測資料、對比現生及過去沉積物粒徑分佈等參數、總有機碳及有孔蟲資料等,發現6,000以來 (海平面相對穩定時期) 濁水溪河口沉積環境的水深逐漸變淺,沉積環境為遠濱過渡環境轉變為潮灘環境,潮灘環境再轉變成河口三角洲環境,並沿著向海的方向堆積。
Abstract
The Zhuoshui River basin is located on the fluvial plain of the western Taiwan and also in a subtropical monsoon climate regime. Attributed to the highly frequent earthquake, steep topography, typhoons and monsoons, the yearly average sediment load of the Zhuoshui River can reach over 54x106 ton. However, the strong seasonality of its annual sediment load and the mesotidal environment (tidal range is around 2.7 m) at the river mouth causes fine-grained sediment exported from the Zhuoshui River to not easily deposit in the vicinity of the river mouth.
According to previous studies, the sea level around the Zhuoshui River is relative stable from the past 6,000 BP. Therefore, this study focuses on the evolution of the sedimentary system at the mouth of the Zhuoshui River which has been influening by the modern hydrodynamic forces during this period. Sediment samples were taken from two 100 m core drilled by the Coastal Geology Laboratory in NSYSU and from the several Vibracores drilled by the NTNU. Following the principle “The present is the key to the past”, we used the sediment grain sizes, total organic carbon (TOC), the distribution of foraminifera, and age model constrained by AMS14C dates to describe the evolution of the deposition system at the Zhuoshui River mouth.
The preliminary results show that the environmental changes of the Zhuoshui
River mouth have been through several facies, including offshore transition, shoreface, tidal flat, bay-head delta, and terrestrial environment since 6,000 BP, indicating a progradational sequence.
目次 Table of Contents
論文審定書----------------------------------------------------------------------------------------i
致謝------------------------------------------------------------------------------------------------ii
摘要-----------------------------------------------------------------------------------------------iii
英文摘要-----------------------------------------------------------------------------------------iv
目錄-----------------------------------------------------------------------------------------------vi
圖目錄--------------------------------------------------------------------------------------------ix
表目錄------------------------------------------------------------------------------------------xiii
第一章 序論-------------------------------------------------------------------------------------1
1-1 前言---------------------------------------------------------------------------------1
1-2 研究目的---------------------------------------------------------------------------5
第二章 研究區域-------------------------------------------------------------------------------6
2-1 地理位置及氣候------------------------------------------------------------------6
2-2 地質概況---------------------------------------------------------------------------9
第三章 材料與方法---------------------------------------------------------------------------10
3-1 實驗材料--------------------------------------------------------------------------10
3-2 儀器介紹--------------------------------------------------------------------------12
3-2-1 震盪式岩心儀--------------------------------------------------------------12
3-2-2 多重感應元岩心記錄器--------------------------------------------------14
3-2-3 反射色分光光度計--------------------------------------------------------16
3-2-4 雷射粒徑分析儀-----------------------------------------------------------18
3-3 實驗方法 ------------------------------------------------------------------------21
3-3-1 樣品前處理-----------------------------------------------------------------21
3-3-2 岩心沉積物描述-----------------------------------------------------------22
3-3-3 岩相及沉積環境-----------------------------------------------------------22
3-3-4 粒徑分析實驗--------------------------------------------------------------34
3-4 經驗函數 (EOF)-----------------------------------------------------------------36
第四章 結果------------------------------------------------------------------------------------38
4-1 現代濁水溪河口岩心及表層沉積物資料分析結果-----------------------38
4-1-1 現生碎浪帶環境-----------------------------------------------------------39
4-1-2 現生潮灘環境--------------------------------------------------------------42
4-1-3 現生河口沙洲環境--------------------------------------------------------49
4-1-4 現生河道環境--------------------------------------------------------------60
4-2 過去6,000年濁水溪河口北孔、南孔岩心資料分析結果-----------------64
4-2-1 遠濱過渡帶環境-----------------------------------------------------------68
4-2-2 濱面環境--------------------------------------------------------------------77
4-2-3 潮灘環境--------------------------------------------------------------------84
4-2-4 河口三角洲環境-----------------------------------------------------------92
4-3 經驗函數 (EOF) 分析結果---------------------------------------------------99
4-3-1 影響沉積物沉積可能因子之假設及EOF分析結果-----------------99
4-3-2 濁水溪北孔 (JRD-N)、南孔 (JRD-S) 岩心偏離場第一模態結果
------------------------------------------------------------------------------102
第五章 討論----------------------------------------------------------------------------------108
5-1 不同環境的沉積物參數分布------------------------------------------------108
5-1-1 濱面環境-------------------------------------------------------------------108
5-1-2 潮灘環境-------------------------------------------------------------------109
5-1-3 河口三角洲環境----------------------------------------------------------111
5-2 經驗函數討論------------------------------------------------------------------113
5-2-1岩心各個偏離場的比較--------------------------------------------------113
第六章 結論----------------------------------------------------------------------------------118
第七章 參考文獻----------------------------------------------------------------------------120
中文部份------------------------------------------------------------------------------120
英文部份------------------------------------------------------------------------------122
附錄---------------------------------------------------------------------------------------------128
參考文獻 References
私立逢甲大學營建及防災中心,2007。河川高灘地淤積砂石開採可行性評估研究。經濟部水利署。
李杰,2013。潮汐機制影響下濁水溪河口懸浮顆粒特性之變化。國立中山大學海下科技應用海洋物理研究所碩士論文,共108頁。
林宗儀,2010。台灣西南海岸300年來的變遷。地質,第29卷,第34-37頁。
吳樂群,1999。嘉南平原沉積物與沉積環境分析及地層對比研究。經濟部中央地質調查所出版,共119 頁。
吳琮壬,2007。嘉義海岸平原區末次冰期以來古沉積環境之研究。國立台灣大學地質科學所碩士論文,共197頁。
美國地質調查所,網址://www.usgs.gov。
姜在興,2003。沉積學。石油工業出版社,共540頁。
孫永傳、李惠,1985。碎屑沉積相和沉積環境。北京地質出版社,共540頁。
孫林耀明,1988。台灣西岸海埔地自然特性及開發利用之分析。中國文化大學地理研究所博士論文,第18-22頁。
國立交通大學防災工程研究中心,2006。全省主要河川流域地質資料查核:鳳山溪及濁水溪專題報告書。經濟部水利署水利規劃試驗所(3) ,第13-64 頁。
陳鎮東,1994。海洋化學。國立編譯館,第346-350頁。
陳文福、江崇榮,1999。濁水溪扇洲及鄰近地區之沉積物分布與沉積環境。地質,第18卷,第17-28頁。
陳華玟、吳樂群、李通藝,2012。彰化海岸平原晚第四紀沉積物的古地理演變。經濟部中央地質調查所彙刊,第25號,第65-94頁。
陳俊偉,2012。枯、豐水季濁水溪河口三角洲及潮坪沉積物傳輸型態河來源研究。國立中山大學海洋地質及化學研究所碩士論文,共112頁。
陳婷婷,2013。上次冰期時期濁水溪口岩心中陸相古沉積環境的解析。國立中山大學海洋地質及化學研究所碩士論文,共94頁。
張瑞津,1983。濁水溪平原的地勢分析與地形變遷。國立台灣師範大學地理系,地理學研究第7期,第85-100 頁。
張瑞津,1985。濁水溪沖積扇河道變遷之探討。國立台灣師範大學地理系,地理學研究第11期,第199-228 頁。
張素玢,2014。濁水溪三百年:歷史.社會.環境。衛城出版。共274頁。
楊峻誌,2012。台灣西部濁水溪口陸域岩心全新世時期有孔蟲的分布。國立中山大學海洋地質及化學研究所碩士論文,共70頁。
楊仁凱,2010。沖淡水中粒徑結構之時空變化。國立中山大學海洋地質及化學研究所碩士論文,共160頁。
經濟部水利署,網址: http://www.wra.gov.tw/。
鄭屹君,2010。蘭陽平原古沉積環境分析。國立台灣海洋大學應用地球科學研究所碩士論文,共75頁。
賴慈華、賴典章,2002。麥寮、西螺、台西、北港地質圖幅及說明書。經濟部中央地質調查所。
羅建育,2005。運用多重感應元岩心記錄器測量海床底質之聲學特性。海軍軍官季刊,24,第120-124頁。
Anderson, R. H., 1988. Marine Geology: A Planet Earth Perspective. New York, Wiley. 328p.
Angelier, J., Barrier, E., Chu, H. T., 1986. Plate collision and paleostress trajectories in a fold-thrust belt: the Foothills of Taiwan. Tectonophysics, 125, 161-178.
Bard, E., Hamelim, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., Rougerie, F., 1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382, 241-244.
Bird, M. I., Fifield, L. K., Teh, T. S., Chang, C. H., Shirlaw, N., Lambeck, K., 2007. An inflection in the rate of early mid-Holocene eustatic sea-level rise: A new sea-level curve from Singapore. Estuarine, Coastal and Shelf Science, 523-536.
Boggs, S., 2001, Principle of Sedimentology and Stratigraphy. New Jersey, Inc, Prentice-Hall. 726p.
Chang, Y. P., Wang, W. L., Yokoyama, Y., Kawahata, H., Chen, M. Tz., 2008. Millennial-Scaleplanktic foraminifer faunal variability in the East China Sea during the past 40,000 Years (IMAGES MD012404 from the Okinawa Trough). TerrestrialAtmospheric & Oceanic Sciences, 4, 389-401.
Chen, Y. G., Liu, T. K., 1996. Sea level changes in the last several thousand years, Penghu islands, Taiwan strait. Quaternary Research, 45, 254-262.
Chun, S. S., Chough, S. K., 1995. The Cretaceous Uhangri Formation, SW Korea: lacustrine margin facies. Sedimentology, 42, 293-322.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., 2003. Links between erosion runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648-651.

Dalrymple, R. W., 1992. Tidal depositional systems, in Walker, R. G. and James, N. P., eds. Facies Models: Response to Sea Level Change. Geol. Assoc. Can., Waterloo, Ontario, 195-218.
De Mowbray, T., 1983. The genesis of lateral accretion deposits in recent intertidal mudflat channels, Solway Firth, Scotland. Sedimentology, 30, 425-435.
Dott, R. H. Jr., Bourgeois, J., 1982. Hommocky stratification: Significance of its variable bedding sequences. Geol. Soc. Am. Bull, 93, 663-680.
Emery, D., Meyers, K. J., 1996. Sequence Stratigraphy. Blackwell Science Ltd, Oxford, 297.
Frey, R. W., Basan, P. B., 1985. Coastal salt marshes, in Davis, R.A. Jr., ed. Coastal Sedimentary Environments. Springer Verlag, Berlin, 225-289.
Galloway, W. E., 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. Houston Geological Society, 87-98.
García, G. F., Corbí, H., Soria, J. M., Viseras, C., 2011. Architecture analysis of a river flood-dominated delta during an overall sea-level rise (early Pliocene, SE Spain). Sedimentary Geology, 237, 102-113.
Gyllencreutz, R., Mahiques, M. M., Alves, D. V. P., Wainer, I. K. C., 2010. Mid to late-Holocene paleoceanographic changes on the southeastern Brazilian shelf based on grain size records. The Holocene, 20, 863-875.
Hsu, F. H., Su, C. C., Wang, C. H., Lin, S., Liu, J., Huh, C. A., 2014. Accumulation of terrestrial organic carbon on an active continental margin offshore southwestern Taiwan: Source-to-sink pathways of river-borne organic particles. Journal of Asian Earth Sciences, 91, 163-173.

Huh, C. A., Lin, H. L., Lin, S., Huang, Y. W., 2009. Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon. Journal of Marine Systems, 4, 405-416.
Jervey, M.T., 1988. Quantitative geological modeling of siliciclastic rock sequence and their seismic expression, in Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J., eds., Sea-level Changes: An integrated approach: Soc. Econ. Paleontologists and Mineralogists Spec. Pub, Tulsa, Oklahoma, 42, 47-69.
Kao, S. J., Chan, S. C., Kuo, c. H., Liu, K. K., 2005. Transport-dominated sediment loading in Taiwanes river: A case study from the Ma-an Stream. Journal of Geology, 113, 217-225.
Kao, S. J., Milliman, J. D., 2008. Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. Journal of Geology, 116, 431-448.
Klein G. de V., 1971. A sedimentary model for determining paleotidal range. Geol. Soc. Am. Bull., 8, 2585-2592.
Liu, J. P., Liu, C. S., Xu, K. H., Milliman, J. D., Chiu, J. K., Kao, S. J., Lin, S. W., 2008. Flux and fate of small mountainous rivers derived sediments into the Taiwan strait. Marine Geoloey, 28, 43-51.
Liu, J. T., Yuan, P. B., Hung, J. J., 1998. The coastal transition at the mouth of a small mountainous river in Taiwan. Sedimentology, 45, 803-816.

Liu, J. T., Huang, J. S., Chyan, J. M., 2000. The coastal depositional system of a small mountainous river: a perspective from grain-size distributions. Marine Geology, 165, 63-86.
Liu, J. T., Liu, K. J., Huang, J. C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 181, 357-386.
Liu, J. T., Hung, J. J., Huang, Y. W., 2009. Partition of suspended and riverbed sediments related to the salt-wedge in the lower reaches of a small mountainous river. Marine Geology, 264, 152-164.
Manz, P. A., 1978. Bedforms produced by fine cohesionless granular and flakey sediments under subcritical water flows. Sedimentology, 25, 83-103.
McManus J., 1988. Grain size determination and interpretation. Techniques in Sedimentology, Blackwell: Oxford, 63-85.
McLaren, P., 1981. An interpretation of trends in grain size measures. J. Sediment. Petrol, 51, 611-624.
Milliman, J. D., Meade, R. H., 1983. World wide delivery of river sediment to the ocean. Journal of Geology, 91, 1-21.
Milliman, J. D., Syvitski, J. P. M., 1992. Geomorphic tectonic control of sediment discharge to the ocean-the importance of small mountainous rivers. Journal of Geology, 100, 525-544.
Milliman, J. D., Kao, S. J., 2005. Hyperpycnal discharge of fluvial sediment to the ocean: Impact of super-typhoon Herb (1996) on Taiwanese River. Journal of Geology, 113, 503-516.

Morton, R. A., 2003. An overview of coastal land loss: with Emphasis on the Southeastern United States. U. S. Geology Survey, Open File Report, 3-337.
Navarro, M., Munoz, P. J. J., Roman.S. J., Tsoar, H., Rodriguez, I., Gomez, P. G., 2011. Assessment of highly active dune mobility in the medium, short and very short term. Geomorphology, 129, 14-28.
Nelson, C. H., 1982. Modem shallow-water graded sand layers from storm surges, Bering Shelf: A mimic of Bouma sequences and turbidite systems. Sedimentary Petrology, 52, 537-545.
Nemce, W., Steel, R. J., 1988. Fan Delta. Sedimentology and Tectonic Settings, London. Blackie, 444p.
Nielsen, A. A., Conradsen, K., Andersen, O. B., 2002. A change oriented extension of EOF analysis applied to the 1996-1997 AVHRR sea surface temperature data. Physics and Chemistry of the Earth, 27, 1379-1386.
Rahmani, R.A., 1988. Estuarine tidal channel and nearshore sedimentation of a late Cretaceous epicontinental sea. Tidal-influenced Sedimentary Environments and Facies, 433-471.
Reading, H. G., 1996. Sedimentary Environments: Processes, Facies and Stratigraphy. Blackwell Science Ltd, Oxford, 688p.
Reineck, H. E., Wunderlich, F., 1968. Classification and origin of flaser and lenticular bedding. Sedimentology, 11, 99-104.
Reineck, H. E., 1972. Tidal flats, in Rigby, J.K. and Hamblin, W. K., Recognition of Ancient Sedimentary Environments. Paleontol. Mineral. Spec. Pub, 16, 146-159.

Reineck, H. E., Singh, I. B., 1980. Depositional Sedimentary Environments. Springer Verlag, Berlin, 549p.
Stear, W. M., 1985. Comparison of the bedform distribution and dynamics of modern and ancient sandy ephemeral flood deposits in the southwestern Karoo region, South Africa. Sedim. Geol, 45, 209-230.
Stuiver, M., Reimer, P. J., Reimer, R. W., 2005. CALIB 5.0.
Syvitski, J. P. M., 2003. Supply and flux of sediment along hydrological pathways: research for the 21st century. Global and Planetary Change, 39, 1-11.
Terwindt, J. H. J., 1988. Palaeo-tidal reconstructions of inshore tidal depositional environments. Tidal-influenced Sedimentary Environments and Facies, 233-263.
Tolkova, E., 2010. EOF analysis of a time series with application to tsunami detection. Dynamics of Atmospheres and Ocean, 50, 35-54.
Vail, P. R., 1987. Seismic stratigraphy interpretation procedure, in Bally, A.W., Atlas of seismic stratigraphy: Am. Assoc. Petroleum Geology Studies in Geology, 27, 1-10.
Walker, R. G., James, N. P., 1992. Facies models: Response to sea level change. Geol. Assoc. Canada, 409.
Wright, L. D., 1977. Sediment transport and deposition at river mouths: a synthesis. Geological Society of America Bulletin, 88, 857-868.
Yang, S. Y., Yim, Wyss W. S., Huang, G. Q., 2008. Geochemical composition of inner shelf Quaternary sediments in the northern South China Sea with implications for provenance discrimination and paleoenvironmental reconstruction. Global and Planetary Change, 60, 207- 221.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code