Responsive image
博碩士論文 etd-0607116-033347 詳細資訊
Title page for etd-0607116-033347
論文名稱
Title
Aiptasia-Symbiodinium的共生關係中共生藻獲取鐵的途徑與高溫誘發共生藻缺鐵反應之探討
Study on the iron-harvesting pathway of host-harbored zooxanthellae and the high temperature induces Symbiodinium iron-deficiency genes expression during Aiptasia-Symbiodinium endosymbiosis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
108
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-01
繳交日期
Date of Submission
2016-07-07
關鍵字
Keywords
高溫、ApTF、共生小體、缺鐵、ApRab5
ApRab5, ApTF, Symbiosome, High temperature, Iron-deficiency
統計
Statistics
本論文已被瀏覽 5848 次,被下載 962
The thesis/dissertation has been browsed 5848 times, has been downloaded 962 times.
中文摘要
腔腸動物與共生藻的共生關係是形成珊瑚礁生態系統的重要基礎生命現象。海水的溫度升高是導致珊瑚白化的最主要原因,若是再加上鐵資源的缺乏,更會加劇白化的速度。因此,本論文針對兩個研究方向進行探究,其一是探討棲息在宿主細胞共生小體內的共生藻,是如何從宿主的細胞內取得鐵,其二是探討高溫是否會抑制共生藻攝取鐵的路徑或效率,而引發缺鐵的情況。根據過去在美麗海葵(Aiptasia pulchella)的Rab4和Rab5蛋白的研究成果,提出一個共生態共生藻在腔腸動物細胞內取得鐵的路徑假說:共生態共生藻會透過控制腔腸動物的Rab4和Rab5,調控輸鐵蛋白(transferrin)所在的囊泡,使其與共生小體進行交互作用而取得鐵的來源。為了驗證此假說,本文選殖Aiptasia pulchella 輸鐵蛋白(ApTF ,KJ818897),並生產出相對應的特異性抗體,透過免疫螢光染色的技術,分析 ApTF與 Aiptasia pulchella Rab4蛋白(ApRab4)和 Aiptasia pulchella Rab5蛋白(ApRab5)在 Aiptasia pulchella 共生細胞內的分布。實驗結果顯示,ApTF會與ApRab4和ApRab5的訊號重疊並坐落在共生小體上,此證據支持本文所提出的鐵傳輸路徑,並且在高溫30℃的處理下,ApTF、 ApRab4和ApRab5在共生小體上的訊號比例會降低,也顯示此路徑會被高溫30℃所抑制。另外透過測量離體態共生藻細胞內的鐵濃度,並合併即時連鎖聚合酶鏈反應偵測共生藻 Symbiosinium spp.的鐵缺乏指示基因 flavodoxin(SymFld,KJ818898) 和 high-affinity iron permease 1(SymFTR1,KJ818899)在mRNA層次的表現量,建立共生藻缺鐵反應的指標,接著根據此缺鐵指標偵測共生態共生藻在高溫30℃的處理下的缺鐵反應。結果指出,在高溫30℃處理下,離體態和共生態共生藻都會引發缺鐵反應。綜合以上結果,本論文提供了一個共生藻在腔腸動物細胞內獲取鐵的可能路徑。並且在高溫30℃處理下,此路徑的抑制和其所引發的共生藻的缺鐵反應,很可能是導致白化發生的潛在因素。
Abstract
Coral bleaching is the consequence of disruption of the mutualistic Cnidaria-dinoflagellate association. Elevated seawater temperatures have been proposed as the most likely cause of coral bleaching whose severity is enhanced by a limitation in the bioavailability of iron. Iron is required by numerous organisms including the zooxanthellae residing inside the symbiosome of cnidarian cells. However, the knowledge of how symbiotic zooxanthellae obtain iron from the host cells and how elevated water temperature affects the association is very limited. Since cellular iron acquisition is known to be mediated through transferrin receptor-mediated endocytosis, a vesicular trafficking pathway specifically regulated by Rab4 and Rab5, we set out to examine the roles of these key proteins in the iron acquisition by the symbiotic Symbiodinium. Thus, we hypothesized that the iron recruitments into symbiotic zooxanthellae-housed symbiosomes may be dependent on rab4/rab5-mediated fusion with vesicles containing iron-bound transferrins and will be retarded under elevated temperature. In this study, we cloned a novel monolobal transferrin (ApTF) gene from the tropical sea anemone Aiptasia pulchella and confirmed that the association of ApTF with A. pulchella Rab4 (ApRab4) or A. pulchella Rab5 (ApRab5) vesicles is inhibited by elevated temperature through immunofluorescence analysis. We confirmed the iron-deficient phenomenon by demonstrating the induced overexpression of iron-deficiency-responsive genes, flavodoxin and high-affinity iron permease 1, and reduced intracellular iron concentration in zooxanthellae under desferrioxamine B (iron chelator) and high temperature treatment. In conclusion, our data are consistent with algal iron deficiency being a contributing factor for the thermal stress-induced bleaching of symbiotic cnidarians.
目次 Table of Contents
論文審定書..............................i
論文公開授權書............................ii
誌謝.................................iii
中文摘要...............................iv
英文摘要..............................vi
圖表目錄..............................viii
縮寫字對照表.............................ix
第一章 總論............................1
壹、 研究背景.........................2
一、 腔腸動物與共生藻的共生關係..............2
二、 共生藻的分類和白化現象................2
三、 腔腸動物的共生關係與海水中的鐵元素的關聯.......5
貳、研究方向與實驗架構....................6
参、參考文獻........................7
第二章 共生態共生藻攝取鐵的途徑之探討...............12
壹、中文摘要........................13
貳、英文摘要........................14
参、文獻回顧........................15
一、 鐵元素對共生藻的重要性..............15
二、 共生藻攝取鐵的方式.................15
三、 藉由ApTF探討共生態共生藻獲取鐵的途徑........16
肆、材料與方法.......................18
一、 實驗生物的取得與飼養................18
二、 實驗生物的RNA抽取與cDNA基因庫製作........18
三、 ApTF的基因序列分析...............19
四、 ApTF重組蛋白的建構、表現與純化...........19
五、 ApTF抗體的製作................... 20
六、 西方墨點法.....................21
七、 免疫螢光染色技術..................22
伍、結果..........................23
一、 ApTF基因序列及推演的氨基酸序列..........23
二、 ApTF抗體的專一性..................24
三、 ApTF蛋白在美麗海葵共生細胞內的分布.........24
四、 共生藻透過共生小體上的Rab蛋白融合包裹著運鐵蛋白與鐵元素的囊泡......................24
陸、結論..........................25
参、參考文獻........................25
第三章 共生藻缺鐵指標基因的建立..................29
壹、中文摘要........................30
貳、英文摘要........................31
参、文獻回顧........................32
一、 高溫與缺鐵之關聯..................32
二、 共生藻缺鐵指示基因SymFld1和SymFTR1........32
肆、材料與方法.......................34
一、 實驗生物的取得與飼養................34
二、 實驗生物的RNA抽取與cDNA基因庫製作.......34
三、 SymFld1和SymFTR1的基因序列分析.........35
四、 除鐵劑(deferoxamine)與高溫30℃處理離體態共生藻..35
五、 即時聚合酶連鎖反應.................35
六、 離體態共生藻細胞鐵含量的測量............37
伍、結果..........................37
一、 SymFld1基因序列以及推演的氨基酸序列.........37
二、 SymFTR1基因序列以及推演的氨基酸序列........38
三、 除鐵劑(deferoxamine)與高溫30℃處理誘發離體態共生藻細胞內鐵濃度下降....................38
四、 除鐵劑(deferoxamine)與高溫30℃處理誘發離體態共生藻SymFld1和SymFTR1基因大量表現...........38
陸、結論..........................39
参、參考文獻........................39
第四章 高溫誘發共生態共生藻的缺鐵反應...............42
壹、中文摘要........................43
貳、英文摘要........................44
参、文獻回顧........................45
一、 環境逆境與白化現象.................45
二、 環境逆境對共生藻的影響...............45
肆、材料與方法.......................47
一、 實驗生物的取得與飼養................47
二、 實驗生物的RNA抽取與cDNA基因庫製作........47
三、 除鐵劑(deferoxamine)與高溫30℃處理美麗海葵.....47
四、 即時聚合酶連鎖反應.................48
五、 免疫螢光染色技術..................48
伍、結果..........................48
一、 高溫處理美麗海葵誘發共生態共生藻缺鐵反應......48
二、 除鐵劑(deferoxamine)處理美麗海葵對共生態共生藻無顯著缺鐵反應.......................48
三、 透過Rab蛋白運輸鐵的路徑會被高溫所抑制.......49
陸、結論..........................50
参、參考文獻........................50
第五章 綜合討論與未來研究方向...................54
壹、綜合討論......................... 55
一、 ApTF的功能.....................55
二、 高溫誘發共生藻缺鐵反應導致白化的過程........55
三、 高溫對不同種共生藻的影響..............56
貳、 未來研究方向......................58
一、溫度對共生藻攝取鐵的能力的影響...........58
二、共生藻具備儲鐵蛋白(ferritin)基因與對抗高溫逆境的關係.59
參、 參考文獻........................ 61
第六章 已發表的英文期刊著作..................... 64
圖表................................72
參考文獻 References
Al-Horani, F. A., Al-Moghrabi, A. S. M., de Beer, A. D. (2003) The mechanism of
calcification and its relation to photosynthesis and respiration in the scleractinian
coral Galaxea fascicularis. Marine Biology 142: 419-426.
Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., et al. (2008) Heat stress: An overview of molecular responses in photosynthesis. Photosynthesis Research 98: 541–550.
Allen, A. E., Laroche, J., Maheswari, U., Lommer, M., Schauer, N., Lopez, P. J.,
Finazzi, G., Fernie, A. R., and Bowler, C. (2008) Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proceedings of the National Academy of Sciences 105: 10438-10443.
Anthony, K. R. N., and Hoegh-Guldberg, O. (2003) Kinetics of photoacclimation in corals. Oecologia 134: 23-31.
Armbrust, E.V., Berges, J.A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H.,
Zhou, S., Allen, A. E., Apt, K.E., Bechner, M. et al. (2004) The genome of the
diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science
306: 79-86.
Baker, A. C. (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology and Systematics 34: 661-689.
Baldwin, G. S. (1993) Comparison of transferrin sequences from different species.
Comparative Biochemistry and Physiology part B 106 (1): 203-18.
Barshis, D. J., Ladner, J. T., Oliver, T. A., Palumbi, S. R. (2014) Lineage specific
transcriptional profiles of Symbiodinium spp. unaltered by heat stress in a coral host. Molecular Biology and Evolution 31: 1343-1352.
Beinert, H., Kennedy, M. C., Stout, C. D. (1996) Aconitase as Iron−Sulfur Protein, Enzyme, and Iron-Regulatory Protein. Chemical Reviews 96 (7): 2335-74.
Belda-Baillie, C. A., Baillie, B. K., and Maruyama, T. (2002) Specificity of a Model
Cnidarian-Dinoflagellate Symbiosis. Biological Bulletin 202: 74-85.
Brooks, J.M., Wessel, G.M., (2002) The major yolk protein in sea urchins is a transferrin-like, iron binding protein. Developmental biology 245: 1-12.
Brown, B. E. (1997) Coral bleaching: causes and consequences. Coral Reefs 16: 129-138.
Chen, M.C., Cheng, Y. M., Hong, M. C., and Fang, L. S. (2004) Molecular cloning of Rab5 (ApRab5) in Aiptasia pulchella and its retention in phagosomes harboring live zooxanthellae. Biochemical and Biophysical Research Communications 324 (3): 1024.
Coles, S. L., and Jokiel, P. L. (1978) Synergistic effects of temperature, salinity, and light on the hermatypic coral Montipora verrucosa. Marine Biology 49: 187-195.
Colley, N.J., Trench, R.K., 1983. Selectivity in phagocytosis and persistence of symbiotic algae in the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain) 219 (1214): 61-82.
Crichton, R. R., and Charloteaux-Wauters, M. (1987) Iron transport and storage.
European Journal of Biochemistry 164 (3): 485-506.
Crossland, C. J., Hatcher, B. G., Smith, S. V. (1991) Role of coral reefs in global ocean production. Coral Reefs 10(2): 55-64.
David, C. N., (1973) A quantitative method for maceration of hydra tissue. Development Genes and Evolution 171 (4): 259.
Davy, S. K., Allemand, D., and Weis, V. M. (2012). Cell biology of cnidarian- dinoflagellate symbiosis. Microbiology and Molecular Biology Reviews, 76 (2): 229-261.
Domenico, I. D., Ward, D. M., and Kaplan J. (2008) Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nature Reviews Molecular Cell Biology 9: 72-81.
Doucette, G. J. and Harrison, P. J. (1990) Some effects of iron and nitrogen stress on
the red tide dinoflagellate Gymnodinium sanguineum. Marine Ecology Progress Series 62: 293-306.
Douglas, A. E. (2003) Coral bleaching—how and why? Marine Pollution Bulletin 46: 385-392.
Dubinsky, Z., Stambler, N., Benzion, McCloskey, M., Muscatine, L. R., and Falkowski, P. G. (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proceedings of the Royal Society of London B 239: 231-246.
Dunne, R. P., and Brown, B. E. (2001) The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993–1998. Coral Reefs 20: 201-210.
Emery, T. (1982) Iron metabolism in humans and plants. American Scientist 70 (6): 626-32.
Falkowski, P. G., and Dubinsky, Z. (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289: 172-174.
Ferrier-Pagés, C., Gattuso, J. P., Dallot, S., and Jaubert, J. (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellae coral Stylophora pistillata. Coral Reefs 19: 103-113.
Finkelstein, R. A., Sciortino, C. V., and McIntosh, M. A. (1983) Role of iron in microbe-host interactions. Reviews of infectious diseases 5 (4): S759-77.
Fitt, W. K., Brown, B. E., Warner, M. E., and Dunne, R. P. (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20: 51-65.
Garibaldi, J. A. (1971) Influence of temperature on the iron metabolism of a fluorescent pseudomonad. Journal of Bacteriology 1036-1038.
Garibaldi, J. A. (1972) Influence of temperature on the biosynthesis of iron transport
compounds by Salmonella Typhimurium. Journal of Bacteriology 262-265.
Geider, R. J., La Roche, J., Green, R. M., and Olaizola M. (1993) Response of the
photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to
nitrate phosphate, or iron starvation. Journal of Phycology 29: 755-766.
Glynn, P. W., and D’Croz, L. (1990) Experimental evidence for high temperature stress as the cause of El Nino-co-incident coral mortality. Coral Reefs 8: 181-191.
Glynn, P. W. (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12: 1-17.
Glynn, P. W. (1996) Coral reef bleaching: facts, hypotheses and implications. Global Change Biology 2: 495-509.
Guikema, J. A., and Sherman, L. A. (1983) Organization and function of chlorophyll
in membranes of cyanobacteria during iron starvation. Plant Physiology 73:
250-256.
Hallmann, A. (2007) Algal transgenics and biotechnology. Transgenic Plant Journal 1(1): 81-98.
Hallock, P., and Schlager, W. (1986) Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1 (4): 389-398.
Hansen, G., and N. Daugbjerg. (2009) Symbiodinium natans sp. nov.: a “free-living” dinoflagellate from tenerife (northeast-atlantic ocean). Journal of Phycology 45 (1): 251-263.
Harvell, C. D. et al. (1999) Emerging marine diseases-climate links and anthropogenic
factors. Science 285: 1505-1510.
Hoegh-Guldberg, O., and Smith, G. J. (1989) The influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatophora hystrix (Dana 1846) and Stylophora pistillata (Esper 1797). Marine Ecology Progress Series 57: 173-186.
Hoegh-Guldberg, O. (1999) Climate change, coral bleaching and the future of the worldís coral reefs. Marine and Freshwater Research 50: 839-866.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318 (5857): 1737-1742.
Hong, M.C., Huang, Y.S., Song, P.C., Lin, W.W., Fang, L.S., Chen, M.C., 2009. Cloning and characterization of ApRab4, a recycling Rab protein of Aiptasia pulchella, and its implication in the symbiosome biogenesis. Marine biotechnology 11: 771-785.
Hughes, T. P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., et al. (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301: 929-933.
Iglesias-Prieto, R., Matta, W. A., Robins, W. A., and Trench, R. K. (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proceedings of the National Academy of Sciences of the United States of America 89: 10302-10305.
Jeonga, H. J., Leea, S. Y., Kanga, N. S., et al. (2014) Genetics and Morphology Characterize the Dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the Sole Representative of Symbiodinium Clade E. Journal of Eukaryotic Microbiology 61, 75–94.
Karl M. (2015) World's oceans facing biggest coral die-off in history, scientists warn.
http://www.theguardian.com/environment/2015/oct/08/worlds-oceans-facing
-biggest-coral-die-off-in-history-scientists-warn
Kelley, V.A., Schorey, J.S., (2003) Mycobacterium's arrest of phagosome maturation in macrophages requires Rab5 activity and accessibility to iron. Molecular biology of the cell 14: 3366-3377.
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Langdon, C., Opdyke, B. N. (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284: 118-120.
Kustka, A. B., Allen, A. E., and Morel, F. M. M. (2007) Sequence analysis and transcriptional regulation of iron acquisition genes in twomarine diatoms. Journal of Phycology 43: 715-729.
La Fontaine, S., Quinn, J. M., Nakamoto, S. S., Page, M. D., Göhre, V., Moseley,
J.L. , Kropat, J., and Merchant, S. (2002) Copper-dependent iron assimilation
pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii.
Eukaryotic Cell 1: 736-757.
Lambert, L. A., Perri, H., and Meehan,T. J. (2005) Evolution of duplications in the transferrin family of proteins. Comparative Biochemistry and Physiology part B 140: 11-25.
Latunde-Dada, G. O., Van Der Westhuizen, J., Vulpe, C. D., Anderson, G. J., Simpson, R. J., and McKie,A. T. (2002) Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells, Molecules and Diseases 29 (3): 356-60.
Lee, S. Y., Jeong, H. J., Kang, N. S., Jang, T. Y., Jang, S. H., and Lim, A. S. (2014) Morphological characterization of Symbiodinium minutum and S. psygmophilum belonging to clade B. Algae 29 (4), 299-310.
Lesser, M. P., and Schick, J. M. (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: Primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Marine Biology 102: 243-255.
Lesser, M. P. (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnology and Oceanography 41 (2): 271-283.
Liping, Z., Hongbo, S., Xiaohua, L. and Zhaopu, L. (2013) Gene regulation of iron-deficiency responses is associated with carbon monoxide and heme oxydase 1 in Chlamydomonas reinhardtii. PLoS One 8 (1): e53835.
Martin, J. H., and Fitzwater, S. E. (1988) Iron limits phytoplankton growth in the north-east Pracific subaractic. Nature 331: 241-343.
Martin, J. H., Fitzwater, S. E., and Gordon, R. M. (1990) Iron limits phytoplankton growth in Antarctic waters. Global Biogeochemical Cycles 4: 5-12.
Martin, J. H., Gordon, R. M., and Fitzwater, S. E., (1991) The case for iron. Limnology and Oceanography 36: 1793-1802.
McKay, R. M. L., Geider, R. J., and La Roche, J. (1997) Physiological and biochemical
response of photosynthetic apparatus of two marine diatoms to Fe stress. Plant Physiology. 114: 615-622.
McKay, R. M. L., La Roche, J., Yakunin, A. F., Durnford, D. G., and Geider, R. J.
(1999) Accumulation of ferredoxin and flavodoxin in marine diatom in response
to Fe. Journal of Phycology 35: 510-519.
Moberg, F., Nystrom, M., Kautsky, N., Tedengren, M., and Jarayabhand, P. (1997) Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis. Marine Ecology Progress Series 157: 53-59.
Morrissey, J., and Bowler, C. (2012) Iron utilization in marine cyanobacteria and
eukaryotic algae. Frontiers in Microbiology 3: 43.
Muscatine, L. (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z. (ed), Ecosystems of the world: Coral reefs, Vol 25. Elsevier, Amsterdam, pp 75-87.
Ng, H., Bayne, H. G., and Garibaldi, J.A. (1969) Heat resistance of Salmonella: the
uniqueness of Salmonella senftenberg 775W. Journal ofApplied Microbiology 17 (1): 78-82.
Nicholas, K. B. and N. H. B. Jr. (1997). GeneDoc: Analysis and Visualization of Genetic Variation.
Olakanmi, O., Britigan, B.E., Schlesinger, L.S., (2000) Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infection and immunity 68: 5619-5627.
Pecoraro, V. L., Harris, W. R., Carrano, C. J. Raymond, K. N. (1981) Siderophilin metal coordination. Difference ultraviolet spectroscopy of di-, tri-, and tetravalent metal ions with ethylenebis [(o-hydroxyphenyl)glycine]. Biochemistry 20: 7033-7039.
Porter, J. W., Lewis, S. K., and Porter, K. G. (1999) The effect of multiple stressors on the Florida Keys coral reef ecosystem: a landscape hypothesis and a physiological test. Limnology and Oceanography 44: 941-949.
Rosenberg, E. and Bae-Haim, Y. (2002) Microbial diseases of corals and global warming. Environment Microbiology 4: 318-326.
Rowan, R., Powers, D. A. (1991) A molecular genetic classification of zooxanthellae
and the evolution of animal-algal symbioses. Science 251 (4999):1348-51.
Rue, E., and Bruland, K. (2001) Domoic acid binds iron and copper: a possible role for the toxin produced by the marine diatom Pseudo-nitzschia. Marine Chemistry 76: 127-134.
Sawada, H., Yokosawa, H., Lambert, C.C., (2001) The Biology of Ascidians. Springer verlag, Tokyo.
Saxby, T., Dennison, W. C., and Hoegh-Guldberg, O. (2003) Photosynthetic response of the coral Montipora digitata to cold temperature stress. Marine Ecology Progress 28 Series 248: 85-97.
Schnepf, E., and Elbrächter, M. (1999) Dinophyte chloroplasts and phylogeny-a review. Grana 38:81-97.
Schoep, V., Stat, M., Falter, J. L. and McCulloch, M. T. (2015) Limits to the thermal
tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific Reports 5: 17639.
Scott, B. D., and H. R. Jitts. 1977. Photosynthesis of phytoplankton and zooxanthellae on a coral reef. Marine Biology 41 (4):307-315.
Severance, S., Chakraborty S., and Kosman D. J. (2004) The Ftr1p iron permease in the yeast plasma membrane: orientation, topology and structure-function relationships. Biochemical Journal 380 (Pt 2): 487-496.
Shick, J. M., Katrina, I., L, W.M., G, T.C., Jason, D., C, D.W., 2011. Responses to iron limitation in two colonies of Stylophora pistillata exposed to high temperature: Implications for coral bleaching. Limnology and oceanography 56, 813-828.
Spiller, S. C., Castelfranco, A. M., and Castelfranco, P. A. (1982) Effect of iron and oxygen on chlorophyll biosynthesis I. In vivo observations on iron and oxygen-deficient plant. Plant Physiology 69: 107-111.
Stanley Jr., G.D., and Swart, P.K. (1995) Evolution of the coral– zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21 (2): 179-199.
Sutak, R., Botebol, H., Blaiseau, P. L., Leger, T., Bouget, F. Y., Camadro, J. M., and
Lesuisse, E. (2012) A Comparative Study of Iron Uptake Mechanisms in Marine
Microalgae: Iron Binding at the Cell Surface Is a Critical Step. Plant Physiology
160 (4): 2271-2284.
Takahashi, S., Yoshioka-Nishimura, M., Nanba, D., Badger, M.R. (2013) Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant physiology 161: 477-485.
Terry, N., and Abadia, J. (1986) Function of iron in chloroplasts. Journal of Plant Nutrition 9: 609-646.
Theil, E.C., 1987. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annual review of biochemistry 56: 289-315.
Trench, R. K. (1993) Microalgal-invertebrate symbioses. Endocytobiosis and Cell Research 9 (2-3): 135-175.
Trick, C. G., Andersen, R. J., Gillam, A., and Harrison, P. J. (1983) Prorocentrin: an extracellular siderophore produced by the Marine dinoflagellate prorocentrum minimum. Science 219 (4582): 306-308.
Van Dolah, F. M., Lidie, K. B., Morey, J. S., Brunelle, S. A., Ryan, J. C., Monroe, E. A., and Haynes, B. L. (2007) Microarray analysis of diurnal- and circadian-regulated genes in the Florida red-tide dinoflagellate Karenia brevis (Dinophyceae). Journal of Phycology, 43 (4): 741-752.
Vandermeulen, J. H., N. D. Davis, and L. Muscatine. (1972) The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Marine Biology 16 (3):185-191.
Wakabayashi, S., Kimura, T., Fukuyama, K., Matsubara, H., Rogers, L. J. (1989) The amino acid sequence of a flavodoxin from the eukaryotic red alga Chondrus crispus. Biochemical Journal 263 (3):981-4.
Wilkinson, C. R. (1999) Global and local threats to coral reef functioning and existence: review and predictions. Marine and Freshwater Research 50: 867-878.
Wooldridge, S. A. (2010) Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32 (7):615-625.
Yamamoto, Y., Aminaka, R., Yoshioka, M., Khatoon, M., Komayama, K., et al. (2008) Quality control of photosystem II: impact of light and heat stresses. Photosynthesis Research 98 (1-3): 589–608.
Yellowlees, D., Rees,T. A. V., and Leggat, W. (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell & Environment 31 (5): 679-694.
宋柏青, (2007)美麗海葵 Rab4 和 Rab14-L 蛋白在胞內共生所扮演的角色之研究。
國立高雄大學生物科技研究所碩士論文. 66pp.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code