Responsive image
博碩士論文 etd-0608106-233419 詳細資訊
Title page for etd-0608106-233419
論文名稱
Title
研製應用於W-CDMA系統之HBT MMICs且包含封裝及電路板效應之評估
Design and Implementation of HBT MMICs for W-CDMA Applications Including Evaluation of Package and PCB Effects
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-05-05
繳交日期
Date of Submission
2006-06-08
關鍵字
Keywords
異質接面雙極電晶體、封裝及電路板效應、升頻器、正交調制器、相移器
package and PCB effects, upconverter, quadrature modulator, phase shifter, HBT
統計
Statistics
本論文已被瀏覽 5775 次,被下載 5069
The thesis/dissertation has been browsed 5775 times, has been downloaded 5069 times.
中文摘要
本研究目的是研製應用於W-CDMA系統發射機之兩個關鍵性元件正交調制器與升頻器GaAs HBT MMICs,而且完整包含封裝及電路板效應之評估。嚴謹地探討HBT小訊號模型與封裝及電路板互連效應之電磁特性化以建立完整的分析理論。本論文提出一種與外部電感無關的新萃取方法可以直接萃取HBT混成pi等效電路之內部元件。使用三維電磁模擬軟體計算無腳式射頻封裝與功能測試用電路板之互連效應並且將之以等效電路表示,進而與設計的HBT MMICs整合分析。第一個HBT MMIC設計是採用新型90度相移器之W-CDMA直接升頻正交調制器。與目前文獻報告之90度相移器比較,本論文所提出之新型90度相移器在實現損耗的特性上具有相當的優勢,然而此90度相移器容易受封裝及電路板效應的影響導致EVM某種程度的惡化。第二個HBT MMIC設計是採用微混波器之W-CDMA升頻器。與採用Gilbert混波器設計之升頻器比較,採用微混波器設計之升頻器在低功率輸出的情況下消耗比較小的電流即可達到相同的高線性度,然而此升頻器容易受封裝及電路板效應的影響導致ACPR嚴重的惡化。比較理論與量測結果驗證封裝及電路板效應對兩個HBT MMICs的影響評估。
Abstract
This research aims to design and implement GaAs HBT MMICs for the two crucial components in W-CDMA transmitters, quadrature modulator and upconverter, with thorough evaluation of the package and PCB effects. To construct a strong theoretical foundation, the small-signal modeling of HBTs and the EM-characterization of package and PCB interconnects are intensively studied. In this dissertation, a novel extrinsic-inductance independent approach is developed for direct extraction of the intrinsic elements in a hybrid-pi equivalent circuit of HBTs. The interconnects of leadless RFIC packages and test PCBs are investigated using the 3-D EM simulation tools and transformed into the equivalent circuits for co-analysis with the designed HBT MMICs. The first HBT MMIC design is a W-CDMA direct-conversion quadrature modulator incorporating a new 90 degrees phase shifter. Although the proposed 90 degrees phase shifter has a remarkable advantage over the others in implementation loss, it is rather susceptible to the package and PCB effects, resulting in a moderate degradation of EVM. The second HBT MMIC design is a W-CDMA upconverter incorporating a popular micromixer. Although the micromixer-based upconverter consumes much less current at low output powers to achieve the same high linearity when compared to a Gilbert mixer-based design, it is quite susceptible to the package and PCB effects, causing a significant degradation in ACPR. Comparison between theory and measurement shows good agreement in evaluating the influences of package and PCB interconnects on both HBT MMICs.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Heterojunction Bipolar Transistor 2
1.2.1 Device Physics and Gummel-Poon Model 2
1.2.2 Parameter Extraction Approaches of Gummel-Poon Model 7
1.3 W-CDMA MMIC Designs 9
1.3.1 Quadrature Modulator 9
1.3.2 Upconverter 10
1.4 Package and PCB Effects on MMICs 12
1.5 Volterra Series and the Applications to MMIC Designs 13
1.6 Overview of Dissertation 13
2 Extraction of HBT’s Small-Signal Equivalent-Circuit Parameters 16
2.1 Extraction of Intrinsic Elements 16
2.2 Extraction of Extrinsic Elements 26
3 Design of Quadrature Modulator MMIC with Evaluation of Package and PCB Effects 31
3.1 Quadrature Modulator MMIC Featured with a New 90o Phase Shifter 31
3.2 Evaluation of Package and PCB Effects on the Implemented Quadrature Modulator 38
3.2.1 90o Phase Shifter 40
3.2.2 Double-Balanced Mixer 41
3.2.3 Differential to Single-Ended Converter 43
3.2.4 Output Buffer 44
3.2.5 Overall Effects 45

3.3 Results and Discussions 46
3.3.1 EVM 46
3.3.2 Sideband Suppression 47
4 Design of Upconverter MMIC with Evaluation of Package and PCB Effects 50
4.1 Intermodulation Distortion Analysis 50
4.1.1 Micromixer 52
4.1.2 Active Balun 57
4.2 Chip Implementation and Parasitic Extraction of Package and PCB Interconnects 60
4.3 Cascade Intercept Point and ACPR Estimation 63
4.4 Comparison of Results and Discussions 66
5 Conclusions 72
Bibliography 74
Appendix 82
Vita 85
參考文獻 References
[1] J. D. Neal, “Advantages of HBT,” Wireless Design & Development, April 1995.
[2] G. Jue, “3GPP W-CDMA systems: design and testing,” IEEE Microwave Magazine, pp. 56-64, June 2002.
[3] B. G. Streetman, and S. Banerjee, Solid state electronic devices. Prentice Hall, 2000.
[4] H. K. Gummel and H. C. Poon, “An integral charge control model of bipolar transistors,” Bell Syst. Tech. J., vol. 49, pp. 827-851, 1970.
[5] D. Costa, W. U. Liu, and J. S. Harris, “Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit,” IEEE Trans. Electron Devices, vol. 38, pp. 2018-2024, Sept. 1991.
[6] C. J. Wei and J. C. M. Hwang, “Direct extraction of equivalent circuit parameters for heterojunction bipolar transistors, “IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2035-2040, Sept. 1995.
[7] Y. Gobert, P. J. Tasker, and K. H. Bachem, “A physical, yet simple small-signal equivalent circuit for the heterojunction bipolar transistor,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 149-153, Jan. 1997.
[8] M. Rudolph, R. Doerner, and P. Heymann, “Direct extraction of HBT equivalent-circuit elements,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 82-84, Jan. 1999.
[9] S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “A new analytical and broadband method for determining the HBT small-signal model parameters,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 1397-1400.
[10] Y. Suh, E. Seok, J. H. Shin, B. Kim, D. Heo, A. Raghavan, and J. Laskar, “Direct extraction method for internal equivalent circuit parameters of HBT small-signal hybrid-π model,” in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 1401-1404.
[11] T. S. Horng, J. M. Wu, and H. H. Huang, “An extrinsic-inductance independent approach for direct extraction of HBT intrinsic circuit parameters,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 2300-2305, Dec. 2001.
[12] T. S. Horng, J. M. Wu, and H. H. Huang, “An extrinsic-inductance independent approach for direct extraction of HBT intrinsic circuit parameters,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 1761-1764.
[13] H. M. Rein, R. Reimann, and L. Schmidt, “A 3 Gb/s bipolar phase shifter and AGC amplifier,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., 1989, pp. 144-145.
[14] K. Maemura, Y. Kohno, H. Nakano, T. Shimura, K. Oki, H. Ishida, and O. Ishihara, “The 200 MHz- and 1.5 GHz-band GaAs monolithic quadrature modulator ICs,” in Gallium Arsenide Integrated Circuit Symp. Dig., 1990, pp. 283-286.
[15] J. Itoh, T. Nakatsuka, K. Sato, Y. Imagawa, T. Uda, T. Yokoyama, M. Maeda, and O. Ishikawa, “A low distortion GaAs quadrature modulator IC,” in IEEE Radio-Frequency Integrated Circuit Symp. Dig., 1998, pp. 55-58.
[16] M. Steyaert, and R. Roovers, “A 1-GHz single-chip quadrature modulator,” IEEE J. Solid-State Circuits, vol. 27, pp. 1194-1197, Aug. 1992.
[17] K. Yamamoto, K. Maemura, N. Andoh, and Y. Mitsui, “A 1.9-GHz-band GaAs direct-quadrature modulator IC with a phase shifter,” IEEE J. Solid-State Circuits, vol. 28, pp. 994-1000, Oct. 1993.
[18] M. K. DaSilva, and A. M. Teetzel, “Wideband IQ modulator with RC/CR automatic quadrature network,” U.S. Patent 5,694,093, Dec. 2, 1997.
[19] R. V. Garver, “Broad-band diode phase shifters,” IEEE Trans. Microwave Theory Tech., vol. 20, pp. 314-323, May 1972.
[20] C. Suckling, R. Pengelly, and J. Cockrill, “S-band phase shifter using monolithic GaAs circuits,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., 1982, pp. 134-135.
[21] S. K. Altes, T. H. Chen, and L. J. Ragonese, “Monolithic RC all-pass networks with constant-phase-difference outputs,” IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1533-1541, Dec. 1986.
[22] A. Boveda and J. I. Alonso, “A 0.7-3 GHz GaAs QPSK/QAM direct modulator,” IEEE J. Solid-State Circuits, vol. 28, pp. 1340-1349, Dec. 1993.
[23] H. Matsuoka and T. Tsukahara, “A 5-GHz frequency-doubling quadrature modulator with a ring-type local oscillator,” IEEE J. Solid-State Circuits, vol. 34, pp. 1345-1348, Sept. 1999.
[24] W. Baumberger, “A single-chip image rejecting receiver for the 2.44 GHz band using commercial GaAs-MESFET-technology,” IEEE J. Solid-State Circuits, vol. 29, pp. 1244-1249, Oct. 1994.
[25] M. J. Gingell, “Single sideband modulation using sequence asymmetric polyphase networks,” Electrical Communication, vol. 48, pp. 21-25, 1973.
[26] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, pp. 873-887, June 2001.
[27] M. Borremans, M. Steyaert, and T. Yoshitomi, “A 1.5 V, wide band 3 GHz, CMOS quadrature direct up-converter for multi-mode wireless communications,” in Proc. Custom Integrated Circuits Conf., 1998, pp. 79-82.
[28] J. M. Wu, F. Y. Han, T. S. Horng, and J. Lin, “Direct-conversion quadrature modulator MMIC design with a new 90 degrees phase shifter including package and PCB effects for W-CDMA applications,” IEEE Trans. Microwave Theory Tech., vol. 54, July 2006, to appear.
[29] J. M. Wu, F. Y. Han, T. S. Horng, and J. Lin, “Direct-conversion quadrature modulator MMIC design with a new 90 degrees phase shifter including package and PCB effects for W-CDMA applications,” in Proc. European Microwave Conf., 2005, pp. 983-986.
[30] A. Springer, L. Maurer, and R. Weigel, “RF system concepts for highly integrated RFICs for W-CDMA mobile radio terminals,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 254-267, Jan. 2002.
[31] D. S. Malhi, L. E. Larson, D. Wang, C. Demirdag, and V. Pereira, “SiGe W-CDMA transmitter for mobile terminal application,” IEEE J. Solid-State Circuits, vol. 38, pp. 1570-1574, Sept. 2003.
[32] T. J. Ellis, “A modified feed-forward technique for mixer linearization,” in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 1423-1426.
[33] M. Chongcheawchamnan and I. D. Robertson, “Linearized microwave mixer using simplified feedforward technique,” Electron. Lett., vol. 35, pp. 724-725, April 1999.
[34] B. A. Xavier. (2002, Sept. 7). A shunt feedback technique for improving the dynamic range of a balanced mixer. [Online]. Available: http://www.rfengineer.net/rfic.htm
[35] V. Aparin and C. Persico, “Effects of out-of-band terminations on intermodulation distortion in common-emitter circuits,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 977-980.
[36] K. L. Fong, “High-frequency analysis of linearity improvement techniques of commom-emitter transconductance stage using a low-frequency-trap network,” IEEE J. Solid-State Circuits, vol. 35, pp. 1249-1252, Aug. 2000.
[37] M. P. van der Heijden, H. C. de Graaff, and L. C. N. de Vreede, “A novel frequency-dependent third-order intermodulation distortion cancellation technique for BJT amplifiers,” IEEE J. Solid-State Circuits, vol. 37, pp. 1176-1183, Sept. 2002.
[38] L. Sheng and L. E. Larson, “An Si-SiGe BiCMOS direct-conversion mixer with second-order and third-order nonlinearity cancellation for WCDMA applications,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 2211-2220, Nov. 2003.
[39] L. Sheng and L. E. Larson, “A general theory of third-order intermodulation distortion in common-emitter radio frequency circuits,” in Proc. IEEE Int. Symp. Circuits and Systems, 2003, pp. 199-180.
[40] V. Aparin and L. E. Larson, “Linearization of monolithic LNAs using low-frequency low-impedance input termination,” in Proc. IEEE European Solid-State Circuits Conf., 2003, pp. 137-140.
[41] M. P. van der Heijden, M. Spirito, M. Pelk, L. C. N. de Vreede, and J. N. Burghartz, “On the optimum biasing and input out-of-band terminations of linear and power efficient class-AB bipolar RF amplifiers,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2004, pp. 44-47.
[42] M. Spirito, M. P. van der Heijden, M. Pelk, L. C. N. de Vreede, P. J. Zampardi, L. E. Larson and J. N. Burghartz, “Experimental procedure to optimize out-of-band terminations for highly linear and power efficient bipolar class-AB RF amplifiers,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2005, pp. 112-115.
[43] B. Gilbert, “The micromixer: a highly linear variant of the Gilbert mixer using a bisymmetric Class-AB input stage,” IEEE J. Solid-State Circuits, vol. 32, pp. 1412-1423, Sept. 1997.
[44] L. F. Keng, C. Dennis, and R. G. Meyer, “A class AB monolithic mixer for 900-MHz applications,” IEEE J. Solid-State Circuits, vol. 32, pp. 1166-1172, Aug. 1997.
[45] C. C. Meng, S. K. Hsu, A. S. Peng, S. Y. Wen, and G. W Huang, “A fully integrated 5.2 GHz GaInP/GaAs HBT upconversion micromixer with output LC current combiner and cscillator,” in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 205-208.
[46] C. C. Meng, S. S. Lu, M. H. Chiang, and H. C. Chen, “DC to 8 GHz 11 dB gain Gilbert micromixer using GaInP/GaAs HBT technology,” Electron. Lett., vol. 39, pp. 637-638, April 2003.
[47] J. M. Wu, J. K. Jau, T. S. Horng, and C. C. Tu, “Highly linear upconverter MMIC designs with complete package and test board effects for CDMA applications,” in IEEE Radio-Frequency Integrated Circuit Symp. Dig., 2003, pp. 405-408.
[48] J. M. Wu, F. Y. Han, J. K. Jau, and T. S. Horng, “Package and PCB effects on linearity of a micromixer-based W-CDMA upconverter,” in Proc. European Microwave Conf., 2004, pp. 245-248.
[49] T. S. Horng, S. M. Wu, H. H. Huang, C. T. Chiu, and C. P. Hung, “Modeling of lead-frame plastic CSPs for accurate prediction of their low-pass filter effects on RFICs,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1538-1545, Sept. 2001.
[50] T. S. Horng, S. M. Wu, C. T. Chiu, and C. P. Hung, “Electrical performance improvements on RFICs using bump chip carrier packages as compared to standard thin shrink small outline packages,” IEEE Trans. Adv. Packag., vol. 24, pp. 548-554, Nov. 2001.
[51] P. Sivonen and A. Parssinen, “Analysis and optimization of packaged inductively degenerated common-source low-noise amplifiers with ESD protection,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1304-1313, April 2005.
[52] P. Sivonen, S. Kangasmaa, and A. Parssinen, “Analysis of packaging effects and optimization in inductively degenerated common-emitter low-noise amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1220-1226, April 2003.
[53] M. Schetzen, The Volterra and Wiener theories of nonlinear systems. J. Wiley & Sons, 1980.
[54] P. Wambacq and W. Sansen, Distortion analysis of analog integrated circuits, Kluwer Academic Publishers, 1998.
[55] S. Narayanan, “Transistor distortion analysis using Volterra series representation,” Bell Syst. Tech. J., pp. 991-1024, May-June 1967.
[56] R. B. Swerdlow, “Analysis of intermodulation noise in frequency converters by Volterra series,” IEEE Trans. Microwave Theory Tech., vol. 26, pp. 305-313, April 1978.
[57] R. A. Minasian, “Intermodulation distortion analysis of MESFET amplifiers using the Volterra Series representation,” IEEE Trans. Microwave Theory Tech., vol. 28, pp. 1-8, Jan. 1980.
[58] A. M. Crosmun and S. A. Maas, “Minimization of intermodulation distortion in GaAs MESFET small-signal amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1411-1417, Sept. 1989.
[59] L. F. Keng and R. G. Meyer, “High-frequency nonlinearity analysis of common-emitter and differential-pair transconductance stages,” IEEE J. Solid-State Circuits, vol. 33, pp. 548-555, April 1998.
[60] N. B. de Carvalho and J. C. Pedro, “Large- and small-signal IMD behavior of microwave power amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2364-2374, Dec. 1999.
[61] N. Guofu, L. Qingqing, J. D. Cressler, C. S. Webster, and D. L. Harame, “RF linearity characteristics of SiGe HBTs,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1558-1565, Sept. 2001.
[62] S. Kusunoki, K. Kawakami, and T. Hatsugai, “Load-impedance and bias-network dependence of power amplifier with second harmonic injection,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 2169-2176, Sept. 2004.
[63] R. A. Baki, T. K. K. Tsang, and M. N. El-Gamal, “Distortion in RF CMOS short-channel low-noise amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 46-56, Jan. 2006.
[64] R. G. Meyer, M. J. Shensa, and R. Eschenbach, “Cross modulation and intermodulation in amplifiers at high frequencies,” IEEE J. Solid-State Circuits, vol. 7, pp. 16-23, Feb. 1972.
[65] V. Aparin, and L. E. Larson, “Analysis and reduction of cross-modulation distortion in CDMA receivers,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1591-1602, May 2003.
[66] S. Narayanan, “Application of Volterra series to intermodulation distortion analysis of transistor feedback amplifiers,” IEEE Trans. Circuits and Systems, vol. 17, pp. 518-527, Nov. 1970.
[67] A. Javed, P. Goud, and B. Syrett, “Analysis of a microwave feedforward amplifier using Volterra series representation,” IEEE Trans. Communications, vol. 25, pp. 355-360, March 1977.
[68] S. Narayanan, “Intermodulation distortion of cascaded transistors,” IEEE J. Solid-State Circuits, vol. 4, pp. 97-106, June 1969.
[69] S. A. Maas, “Third-order intermodulation distortion in cascaded stages,” IEEE Microwave and Wireless Components Lett., vol. 5, pp. 189-191, June 1995.
[70] S. S. Lu, C. Meng, T. W. Chen and H. C. Chen, “The origin of the kink phenomenon of transistor scattering parameter S22,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 333-340, Feb. 2001.
[71] S. S. Lu, C. Meng, T. W. Chen and H. C. Chen, “A novel interpretation of transistor S parameters by poles and zeros for RF IC circuit design,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 406-409, Feb. 2001.
[72] I. Getreu, Modeling The Bipolar Transistor, Tekronix Inc., Beaverton, OR, 1977.
[73] A. Brilland and D. Pezo, “Modulation imperfections in IS-54/136 dual-mode cellular radio,” Microwave Journal, vol. 43, pp. 300-312, May 2000.
[74] F. Y. Han, J. M. Wu, and T. S. Horng, “A rigorous study of package and PCB effects on W-CDMA upconverter RFICs,” IEEE Trans. Microwave Theory Tech., minorly revised, 2006.
[75] M. T. Terrovitis and R. G. Meyer, “Intermodulation distortion in current-commutating CMOS mixers,” IEEE J. Solid-State Circuits, vol. 35, pp. 1461-1473, Oct. 2000.
[76] Q. Li, J. Zhang, W. Li, and J. S.Yuan, “CMOS RF mixer no-linearity design,” in Proc. IEEE Midwest Symp. Circuits and Systems, 2001, pp. 808-811.
[77] Q. Li and J. S.Yuan, “Linearity analysis and design optimisation for 0.18 μm CMOS RF mixer,” in Proc. IEE Circuits, Devices and Systems, 2002, pp. 112-118.
[78] C. Yu, J. S.Yuan, and H. Yang, “MOSFET linearity performance degradation subject to drain and gate voltage stress,” IEEE Trans. Device and Materials Reliability, vol. 4, pp. 681-689, Dec. 2004.
[79] Q. Wu, H. Xiao, and F. Li, “Linear RF power amplifier design for CDMA signals: a spectrum analysis approach,” Microwave J., vol. 41, pp. 22-40, Dec. 1998.
[80] J. S. Ko, J. K. Kim, B. K. Ko, D. B. Cheon, and B. H. Park, “Enhanced ACPR technique by class AB in PCS driver amplifier,” in Proc. IEEE Int. Conf. on VLSI and CAD, 1999, pp. 376-379.
[81] UE Radio Transmission and Reception, 3GPP Standard 25.101 (V5.3.0), 2002.
[82] Digital cellular telecommunications system; radio transmission and reception, 3GPP Standard 05.05 (V8.10.0), 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code