論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2014-06-20
校外 Off-campus:開放下載的時間 available 2015-06-20
論文名稱 Title |
凱利法則下的槓桿交易策略 Leverage Trading Strategy of the Kelly Criterion |
||
系所名稱 Department |
|||
畢業學年期 Year, semester |
語文別 Language |
||
學位類別 Degree |
頁數 Number of pages |
77 |
|
研究生 Author |
|||
指導教授 Advisor |
|||
召集委員 Convenor |
郭修仁 Kuo,Hsioujen |
||
口試委員 Advisory Committee |
李建強 Lee Chien-Chiang |
||
口試日期 Date of Exam |
2012-06-12 |
繳交日期 Date of Submission |
2012-06-20 |
關鍵字 Keywords |
凱利策略、半凱利策略、槓桿型ETF、ARMA-EGARCH模型、標準普爾500指數 Leveraged ETFs, Kelly Strategy, Half Kelly, S&P 500 index, ARMA-EGARCH |
||
統計 Statistics |
本論文已被瀏覽 5816 次,被下載 902 次 The thesis/dissertation has been browsed 5816 times, has been downloaded 902 times. |
中文摘要 |
隨著市場上金融創新的日新月異,越來越多的交易者應用商品的槓桿操作,在追求那令人稱羨超額報酬。在理論和實務上,凱利策略是一個頗具盛名但也有相當爭議的操作方法。其核心概念為極大化資本的長期成長率,在過去的歷史上被稱之為凱利準則,甚至被稱之為財富的公式。凱利準則為報酬率和風險的抵換關係,用來決定每次交易操作的槓桿或者是部位的大小。在實證方法上,我們分別報酬的對殘差分配使用 Normal , Generalized Hyperbolic , Generalized Error 這三種不同假設的EGARCH模型,並用其報酬的條件平均數和變異數計算預期的最適操作槓桿。在實務上,資金操作的風險管理比起交易策略是否有擇時能力來的更為重要。因此在本文中我們使用市場上S&P 500 指數的槓桿型ETF 回測了凱利策略在過去十年的表現和風險管理的控制以及其不同策略之間的比較。 |
Abstract |
While the much more use of leverage could be effective in generating alpha o investment, the Kelly strategy is an attractive approach to capital creation and growth. It is originated from the Kelly criterion dubbed “ fortunes formula “ which maximizes the long run growth rate of wealth. There is a tradeoff of rate of return versus risk/volatility as a asymptotic function solution of leverage or position size determined by the application of EGARCH model in the different residual assumptions given by the Normal, Generalized Hyperbolic, and the Generalized Error distributions. No matter there is any timing ability in any strategy, risk management is much more important especially with many repeated trading. We present the performance and risk control of the leveraged ETFs tracked the S&P 500 index in the past ten years using optimal leverage strategy derived by the full Kelly and fraction Kelly criterion. |
目次 Table of Contents |
中文摘要 ii ABSTRACT iii 1. INTRODUCTION 1 2. RELATED LITERATURES 10 3. METHODOLOGY 15 4. DATA 22 5. EMPIRICAL RESULTS 39 6. CONCLUSION 65 REFERENCE 67 |
參考文獻 References |
Applebaum, D. (2004). "Levy processes-from probability to finance and quantum groups." Notices of the AMS 51(11): 1336–1347. Avellaneda, M. and S. Zhang (2009). "Path-dependence of Leveraged ETF returns." Courant Institute of Mathematical Sciences New York University, New York and Finance Concepts, New York. Bera, A. K. and M. L. Higgins (1997). "ARCH and bilinearity as competing models for nonlinear dependence." Journal of Business & Economic Statistics 15(1): 43-50. Bertrand, P. and J. Prigent "Leveraged ETFs and CPPI-type Strategy: Theory, Simulation and Empirical Study." Bollerslev, T. (1986). "Generalized autoregressive conditional heteroskedasticity." Journal of econometrics 31(3): 307-327. Bollerslev, T. (1987). "A conditionally heteroskedastic time series model for speculative prices and rates of return." The review of economics and statistics 69(3): 542-547. Carver, A. B. (2009). "Do Leveraged and Inverse ETFs Converge to Zero?" Do 2009(1): 144-149. Cooper, T. and D. D. Numerics "Alpha Generation and Risk Smoothing using Managed Volatility." D Bernoulli, ‘Specimen Theoriae Novae de Mensura Sortis’ (Exposition of a New Theory on the Measurement of Risk), Commentarii academiae scientiarum imperialis Petropolitanae, vol.5, 1738, pp.175-192, trans. L. Sommer, 1954. Econometrica, vol.22, 1954, pp.23-36. E O Thorp, (2006)"The kelly criterion in blackjack sports betting, and the stock market." Handbook of asset and liability management: Theory and methodology: 385. Ederington, L. H. and W. Guan (2000). Measuring implied volatility: Is an average better, Working paper, University of Oklahoma. Engle, R. F. (1982). "Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation." Econometrica: Journal of the Econometric Society: 987-1007. Engle III, R. F. and V. Ng (1991). Measuring and testing the impact of news on volatility, National Bureau of Economic Research Cambridge, Mass., USA. Figlewski, S. (1997). "Forecasting volatility." Financial Markets, Institutions & Instruments 6(1): 1-88. Giese, G. "On the Performance of Leveraged and Optimally Leveraged Investment Funds." Glosten, L. R., R. Jagannathan, et al. (1993). "On the relation between the expected value and the volatility of the nominal excess return on stocks." The Journal of Finance 48(5): 1779-1801. Haugh, M. B. "A Note on Constant Proportion Trading Strategies and Leveraged ETFs." J L Kelly Jr, ‘A new interpretation of information rate’, Bell System Technical Journal, vol.35, 1956, pp.917-926. Lauricella, T. (2009). "ETF Math Lesson: Leverage Can Produce Unexpected Returns." Wall Street Journal. Madan, D. B., P. P. Carr, et al. (1998). "The variance gamma process and option pricing." European Finance Review 2(1): 79. Nelson, D. B. (1991). "Conditional heteroskedasticity in asset returns: A new approach." Econometrica 59(2): 347-370. P A Samuelson, ‘The “Fallacy” of Maximizing the Geometric Mean in Long Sequences of Investing or Gambling’, Proceedings of the National Academy of Sciences of the United States of America, vol.68, 1971, pp.2493-2496. Poon, S. H. and C. W. J. Granger (2003). "Forecasting volatility in financial markets: A review." Journal of Economic Literature 41(2): 478-539. R Vince, The New Money Management, John Wiley & Sons, New York, 1995. R Vince, The Leverage Space Trading Model, John Wiley & Sons, New York, 2009. R Vince, The Mathematics of Money Management, John Wiley & Sons, New York 1992, pp.289. R Vince, The New Money Management, John Wiley & Sons, New York, 1995. Trainor, W. J. and E. Baryla (2008). "Leveraged ETFs: A Risky Double that doesn’t multiply by Two." Journal of Financial Planning 21(5): 48-55. Trainor Jr, W. J. "Monthly vs Daily Leveraged Funds." |
電子全文 Fulltext |
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。 論文使用權限 Thesis access permission:自定論文開放時間 user define 開放時間 Available: 校內 Campus:開放下載的時間 available 2014-06-20 校外 Off-campus:開放下載的時間 available 2015-06-20 |
QR Code |