Responsive image
博碩士論文 etd-0626108-200221 詳細資訊
Title page for etd-0626108-200221
論文名稱
Title
區域風場影響台灣海峽流量變化之研究
The Effect of Regional Wind to the Transport Variation in Taiwan Strait
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-04-18
繳交日期
Date of Submission
2008-06-26
關鍵字
Keywords
衛星風場、台灣海峽流量、氣象站、經驗正交函數、模態、風應力旋度
EASNFS, EOF, QSCAT
統計
Statistics
本論文已被瀏覽 5751 次,被下載 1463
The thesis/dissertation has been browsed 5751 times, has been downloaded 1463 times.
中文摘要
台灣海峽流量的動力系統相當複雜,以致其流量會隨時間而有不同的變化,可能影響海峽流量的因子包括:當地風場、遠域風場、海平面梯度的改變、黑潮侵入等。本研究的焦點著重於台灣附近的區域風場對海峽流量變化之影響,風場研究主要依據QSCAT衛星資料,海峽流量使用柯東山博士(Naval Research Laboratory, Stennis Space Center, USA)以EASNFS模式計算之結果。為了更清楚了解QSCAT風場的準確性,將QSCAT風場資料與台灣附近海域四個陸地氣象站的風場資料進行比對,結果發現,QSCAT的風場資料在定性上的變化趨勢,與陸地氣象站所量測到的風場十分相似,但定量上偏大, QSCAT風場的風速乘以 0.6 倍約相當於陸地測站的風場風速。
風場資料的主要分析方法是經驗正交函數(EOF)及相關分析,並將風場區分為遠域風場(東海、黃海、南海)及當地風場(台灣海峽),再分別與海峽流量變化進行探討。QSCAT衛星風場EOF分析之結果顯示,台灣附近的區域風場(100~450N,1050~1400E)主要以季風型態為主(模態1),且台灣海峽流量之變化與季風風場有良好關係,相關係數(R)達0.73;而表示颱風訊號的模態2與海峽流量變化之相關係數則較弱,其原因仍需進一步求證。此外,在東北季風時期,黃海、東海的遠域風場及台灣海峽之當地風場,皆與海峽流量有相當好的相關性;但西南季風時期時,南海海域風場及台灣海峽當地風場,與海峽流量的相關性卻都不高;進一步分析南海風應力旋度與流量變化有相當程度的吻合,推測風旋度會影響南海流場及黑潮入侵,進而影響台灣海峽之流量。
Abstract
The dynamics of water mass transport in the Taiwan Straits is complicated. The time variations of transport in the strait may be influenced by local wind, remote wind, the sea-level gradient between two ends of the strait and the intrusion of Kuroshio etc. This research was aiming for the regional wind effect and the transport variation of the strait. The main data set to be applied in this study is the QSCAT wind. The transport data were the results calculated in EASNFS model of Dr. Dong-Shan Ko (Naval Research Laboratory, Stennis Space Center USA). In order to validate the accuracy of the QSCAT wind, comparisons of QSCAT wind and that of four land weather stations near the Taiwan were conducted. The analysis showed that the variation of QSCAT wind, qualitively, was similar to that of land stations. However, the amplitude of QSCAT wind was larger. In general, the wind speed of QSCAT multiplied by a factor 0.6 would about be equal to the wind speed of land based weather station.
The major methods apply to wind data were the Empirical Orthogonal Function(EOF) and correlation analyses. All the available QSCAT data near Taiwan were collected and were divided into remote wind (East China Sea, Yellow Sea and South China Sea) and local wind (Taiwan Strait). The EOF spatial patterns and time variation were then put together with the strait transport. The results of EOF analysis of QSCAT satellite observation derived wind showed that the regional wind field near Taiwan (100~450N,1050~1400E) were mainly dominated by monsoons (mode 1). There was a good correlation between the monsoon wind and transport variation in Taiwan Strait, with correlation coefficient (r) 0.73. The mode 2 typhoon signal showed week correlation with the transport variation of the strait. The reason is unknown which requires further exploration. In the winter northeastern monsoon season, the Yellow Sea, East China Sea remote wind and Taiwan Strait local wind all showed good correlation with the transport of the strait. However, in southwest monsoon period, the South China Sea wind field and the Taiwan Strait local wind field showed poor correlation with the transport of the strait. Advanced analysis of south sea wind stress curl suggested that the wind stress curl may influence the South China Sea circulation and the Kuroshio intrusion, and then caused the transport variations of the Taiwan Strait.
目次 Table of Contents
章次  頁次
謝誌 Ⅰ                                 
中文摘要 Ⅱ
英文摘要 Ⅳ
目錄 Ⅵ
圖目錄 Ⅷ
表目錄 VII
一、前言 1
1.1 台灣海峽介紹 1
1.2 前人研究 3
1.3 研究目的 8
二、資料來源與品質管制 10
2.1 QSCAT衛星風場 10
2.1.1 QSCAT 每天風場資料品管處理與資料展示 12
2.1.2 QSCAT 每天風場資料補齊 15
2.2中央氣象局風場資料 16
2.2.1 蘭嶼、彭佳嶼氣象站及其風場資料處理 17
2.2.2 金門浮標及其風場資料處理 18
2.3 東沙島氣象測站 22
2.3.1 東沙島氣象測站風場資料處理 23
2.4 台灣海峽流量資料 24
三、資料分析處理 26
3.1分析方法 26
3.1.1 相關(Correlation)及迴歸分析(Regression Analysis) 26
3.1.2 頻譜分析(FFT) 27
3.1.3 濾波分析(Lowpass) 27
3.1.4 經驗正交函數(EOF) 28
3.2風場資料處理 30
3.2.1轉換風場高度 30
3.3.2 風應力及風應力旋度計算 34
3.3 QSCAT與陸地測站風場之比較 35
3.3.1 蘭嶼站點 35
3.3.2 彭佳嶼站點 37
3.3.3 金門站點 38
3.3.4 東沙島站點 39
3.3.5 小結 46
四、結果與討論 47
4.1 QSCAT衛星風場之經驗正交函數模態 47
4.1.1 季風效應 48
4.1.2 颱風之影響 49
4.2 QSCAT衛星風場模態與台灣海峽流量 56
4.2.1 頻譜分析 56
4.2.2 衛星風場模態1與海峽流量 56
4.2.3 衛星風場模態2與海峽流量 57
4.3 QSCAT之區域風場與台灣海峽流量 61
4.3.1 遠域風場效應 61
4.3.2 海峽當地風場效應 63
4.4 QSCAT之南海風場旋度與台灣海峽流量 72
4.4.1南海海域風場之風應力旋度 72
4.5 相關研究之比較 78
五、結論 80
六、參考文獻 82
附錄A 85
參考文獻 References
王玉懷、莊文思〈1995〉台灣附近海域風場之觀測及探討。中央氣象局氣象學報,第四十一卷,第二期,81-90頁。
劉鐘霖〈2003〉台灣海峽流量之觀測。國立中山大學海洋資源研究所碩士論文。共141頁。
羅安凱〈2004〉西北太平洋夏季季內振盪之多重尺度特性。國立臺灣大學大氣科學研究所碩士論文。共121頁。
石蓮滿〈2005〉呂宋海峽上層流場與水團分佈。國立中山大學海洋資源研究所碩士論文。共75頁。
Arya, S.P., 1988. Introduction to micrometeorology. Academic Press, 307.
Chuang, W.S., 1985. Dynamics of subtidal flow in the Taiwan Strait. Journal of Oceanographic Society of Japan, 41, 65–72.
Chuang, W.S., 1986. A note on the driving mechanisms of current in the Taiwan Strait. Journal of Oceanography Society Japan, 42, 355–361.
Chang, Y.C., R.S. Tseng and C.T. Liu, 2008. Evaluation of Tidal Removal Method Using Phase Average Technique from ADCP Surveys Along a Transect Across a Channel in the Taiwan Strait. Terrestrial,Atmospheric & Oceanic Sciences.(in press)
Huh, C.A. and C.C. Su, 1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239,240Pu. Marine Geology, 160(1/2), 183–196.
Jan, S., J. Wang, C.S. Chern and S.Y. Chao, 2002. Seasonal variation of the circulation in the Taiwan Strait. Journal of Marine Systems, 35, 249–268.
Jan, S. and S.Y. Chao, 2003. Seasonal variation of volume transport in the major inflow region of the Taiwan Strait: the Penghu Channel. Deep-Sea Research II, 50, 1117–1126.
Ko, D.S., R.H. Preller, G.A. Jacobs, T.Y. Tang and S.F. Lin, 2003. Transport reversals at Taiwan Strait during October and November 1999. J. Geophy. Res., 108, C11, 3370, doi:10.1029/2003JC001836.
Large, W.G. and S. Pond, 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324-336.
Large, W.G., J. Morzel and G.B. Crawford, 1995. Accounting for surface wave distortion of the marine wind profile in low-level Ocean Storms wind measurements. J. Phys. Oceanogr., 25, 2959-2971.
Liang, W.D., T.Y. Tang, Y.J. Yang, M.T. Ko and W.S. Chuang, 2003. Upper-ocean currents around Taiwan. Deep-Sea Research II, 50, 1085–1105.
Lin, S.F., T.Y. Tang, S. Jan and C.J. Chen, 2005. Taiwan strait current in winter. Continental Shelf Research, 25, 1023–1042.
Liu, J.T. and H.L. Lin, 2004. Sediment dynamics in a submarine canyon:a case of river-sea interaction. Marine Geology, 207, 55-81.
Mask, A.C., J.J. O’Brien and R. Preller, 1998. Wind-driven effects on the Yellow Sea Warm Current. J. Geophys. Res., 103, 30, 713–30, 729.
Metzger, E.J. and H.E. Hurlburt, 1996. Coupled dynamics of the
South China Sea, the Sulu Sea, and the Pacific Ocean. Journal of Geophysical Research, 101, 12331–12352.
Metzger, E.J. and H.E. Hurlburt, 2001. The nondeterministic natureof Kuroshio penetration and eddy shedding in the South China Sea. Journal of Physical Oceanography, 31, 1712–1732.
Caruso, M.J., G.G. Gawarkiewicz and R.C. Beardsley, 2006. Interannual Variability of the Kuroshio Intrusion in the South China Sea. Journal of Oceanography, 62, 559-575.
Qu, T., 2000. Upper-Layer Circulation in the South China Sea. J. Phys. Oceanogr., 30, 1450-1460.
Shaw, P.T. and S.Y. Chao, 1994. Surface circulation in the South China Sea. Deep Sea Research I, 41, 11/12, 1663-1683.
Shaw, P.T., S.Y. Chao and L.L. Fu, 1999. Sea surface height variations in the South China Sea from satellite altimetry. Oceanologica Acta, 22, 1–17.
Teague, W.J., G.A. Jacobs, D.S. Ko, T.Y. Tang, K.I. Chang and M.S. Suk, 2003. Connectivity of the Taiwan, Cheju, and Korea Straits. Continen. Shelf Res., 23, 63-77.
Wang, J. and C.S. Chern, 1989. On cold water intrusions in the eastern Taiwan Strait during the cold season. Acta Oceanographica Taiwanica, 22, 43–67.
Wang, D.P. and C.N.K. Mooers, 1997. Long coastal trapped waves off the west coast of United States, summer 1973. J. Phys. Oceanogr., 7, 856-864.
Wang, Y.H., S. Jan and D.P. Wang, 2003. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuarine, Coastal and Shelf Science, 57, 195–201.
Wang, Y.H., L.Y. Chiao, K.M.M. Lwiza and D.P. Wang, 2004. Analysis of flow at the gate of Taiwan Strait. J. Geophy. Res., 109, C02025, doi:10.1029/2003JC001937.
Wark, K., C.F. Warner and W.T. Davis, 1998. Air Pollution: Its Origin and Control. 3rd ed. Menlow Park, Ca: Addison-Wesley, pp. 584.
Wu, C.R. and H.Y. Chia, 2005. Volume Transport Through the Taiwan Strait: A Numerical Study. TAO, 16, 2, 377-391.
Wyrtki, K., 1961. Physical oceanography of the southeast Asian waters, Scientific Results of Marine Investigation of the South China Sea and the Gulf of Thailand. NAGA Report 2, Scripps Inst. Oceanogr., La Jolla, California, 195.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code