Responsive image
博碩士論文 etd-0629103-185513 詳細資訊
Title page for etd-0629103-185513
論文名稱
Title
CuInSe2薄膜太陽能電池元件之成長與分析
Growth and Analysis of CuInSe2 Thin Film Solar Cell Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-23
繳交日期
Date of Submission
2003-06-29
關鍵字
Keywords
二硒化銅銦、薄膜太陽能電池、分子束蒸鍍系統
solar cell, PVD
統計
Statistics
本論文已被瀏覽 5723 次,被下載 9923
The thesis/dissertation has been browsed 5723 times, has been downloaded 9923 times.
中文摘要
本論文主要以分子束蒸鍍系統成長CuInSe2 雙層膜以製作薄膜太
陽能電池。其他搭配材料包括鈉玻璃基板、硫化鎘緩衝層、氧化鋅透
光層,以及金屬鉬背部電極和鋁正面電極。製程條件方面,除了硫化
鎘於大氣環境下使用化學方法成長外,其餘皆於真空環境中採取物理
氣相沉積法成長。本實驗室已成功研製出以CdS/CuInSe2 為主之薄膜
太陽電池,並由電流-電壓特性得知其填充因子為39.76%、開路電壓
為0.26V、短路電流為2.104mA。此元件特性仍需藉由各層材料性質
之改善來提升,尤其是氧化鋅透光層本身電阻過高,且與鋁金屬電極
之界面接觸不佳的問題均有待改善。另外,P-N 接面理想係數為
1.9161,表示電流傳導機制主要以複合電流為主,因此CuInSe2/CdS
界面特性必得再進行研究改良。
Abstract
We use molecular beam deposition (MBD) system to grows bi-layers
CuInSe2-based thin film solar cell, soda-lime glass as our substrate,
cadmium sulfide(CdS) as our buffer layer, zinc oxide(ZnO) as window
layer, Mo as back contact metal and using Al as front contact metal. In
our device fabrication process, we primary use physical vapor
deposition(PVD) to grows thin film in vacuum condition expect
Cadmium sulfide.
We already fabricate the CdS/CuInSe2-based thin film solar cell
successful. Using current-voltage measurement to get fill factor(F.F.) is
39.76%, open circuit voltage(Voc) is 0.26V and short circuit current(Isc) is
2.104mA in our device. It’s so essential to improve every layers
properties in order to get higher quantum efficiencies. Especially,
resistivity of the zinc oxide window layer is too high and the interface
properties between Al and ZnO is not so good. The junction perfection
factor is 1.9161, recombination current is the dominate current. So,
research and further improve interface characterization between
CuInSe2/CdS is necessary.
目次 Table of Contents
第一章簡介......................................................................................1
1.1 前言........................................................................................1
1.2 CuInSe2 薄膜太陽能電池之研究發展現況與歷史背景...........2
1.3 元件設計分析與探討
1.3.1 元件結構設計及安排................................................3
1.3.2 各層薄膜之需求與功能要求.....................................3
1.4 研究目標...............................................................................8
第二章實驗成長方法與分析儀器....................................................9
2.1 元件製造流程與步驟.......................................................9
2.2 薄膜成長儀器................................................................13
2.2.1 磁控濺鍍系統..........................................................13
2.2.2 分子束蒸鍍系統......................................................13
2.2.3 密閉式化學水域沉積法...........................................14
2.3 薄膜特性分析方法及儀器...................................................14
2.3.1 X-ray 繞射儀.............................................................14
2.3.2 電子微探針分析儀(EPMA) .......................................15
2.3.3 掃描式電子顯微鏡(SEM) ..........................................15
2.3.4 á-step 量測................................................................15
2.3.5 四點探針(Four-point probe) .......................................15
2.3.6 熱探針量測(Hot probe)..............................................16
2.3.7 吸收光譜儀(UV/NIR/VIS).........................................16
2.3.8 霍爾量測儀(Hall-measurement) .................................16
2.3.9 電流-電壓特性量測(I-V) ...........................................16
2.3.10 電容-電壓特性量測(C-V).........................................17
第三章結果與討論.........................................................................18
3.1 材料部分:各層薄膜材料成長與分析................................18
3.1.1 Mo 薄膜之鍍製..........................................................18
3.1.2 CuInSe2 薄膜之鍍製................................................... 21
3.1.3 CdS 薄膜之鍍製.........................................................23
3.1.4 ZnSe 薄膜以及Te 加入之鍍製...................................23
3.1.5 ZnO:Al 薄膜成長探討................................................24
3.1.6 Al 薄膜之鍍製............................................................25
3.2 元件部分:元件特性測試與分析比較................................26
3.2.1 元件特性之基本參數介紹.........................................26
3.2.2 元件製程參數及比較................................................26
3.2.3 電流-電壓特性曲線量測...........................................27
第四章結論....................................................................................29
第五章參考文獻............................................................................ 31
參考文獻 References
1. Lidgate, D., Green energy? Engineering science and education journal, 1992: p. 221-227.
2. Zweibel, K., Harnessing solar cell-The photovoltaics challenge. 1990.
3. Adams, W.G. and R.E. Day, Proc. R. Soc., 1877. A25: p. 113.
4. SZE, S.M., Semiconductor devices-Physics and technology. 1985.
5. Schock, H.W., Thin film photovoltaics. Applied surface science, 1996. 92: p. 606-616.
6. Yang, J., et al., Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency. 26th PVSC, 1997: p. 563-568.
7. 胡振國, 光伏電池-漸趨重要. 光訊, 1999. 81: p. 22-35.
8. 曾百亨, CuInSe2 薄膜太陽電池. 光訊, 1997. 68: p. 27-30.
9. Mitchell, K.W., et al., CuInSe2 cells and modules. IEEE transaction on electron devices, 1990. 37(2): p. 410-417.
10.Dimmler, B., M. Powalla, and H.W. Schock, CIS-based thin film photovoltaic modules: Potential and prospects. Prog. Photovolt: Res. Appl., 2002. 10: p. 149-157.
11. Chu, N. and D. Honeman, Solar cells, 1991. 31: p. 197.
12. Hedstrom, J., et al., ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. IEEE, 1993: p. 364-371.
13. Ramanathan, K., et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 Thin-film solar cell. Prog. Photovolt: Res. Appl., 2003. 11: p. 225-230.
14. Shimizu, A., et al., Znic-based buffer layer in the Cu(In,Ga)Se2 thin film solar cells. Thin solid films, 2000. 361-362: p. 193-197.
15. Olsen, L.C., et al., Non-Cadmium ZnO/CIS and ZnSe/CIS solar cells. First WCPEC, 1994: p. 194-197.
16. Eisele, W., et al., New cadmium-free buffer layers as heterojunction partners on Cu(In,Ga)(S,Se)2 thin film solar cells. IEEE, 2000: p. 692-695.
17. Rockett, A., et al., Na incorporation in Mo and CuInSe2 from production processes. Solar energy materials and solar cells, 1999. 59: p. 255-264.
18. Kimura, R., T. Nakada, and P. Fons, Photoluminescence properties of sodium incorporation in CuInSe2 and CuIn3Se5 thin films. Solar energy materials and solar cells, 2001. 67: p. 289-295.
19. Braunger, D., et al., Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films. Thin solid films, 2000. 361-362: p. 161-166.
20. Ruckh, M., et al., Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films. First WCPEC, 1994: p. 156-159.
21. Vink, T.J., et al., Stress, Strain, and microstructure of sputter-deposited Mo thin films. J. Appl. Phys., 1991. 70(8): p. 4301-4308.
22. Shay, J.L. and J.H. Wernick, Ternary chalcopyrite semiconductors:Growth,Electronic properties, and applications. 1975.
23. Noufi, R., et al., Appl. Phys. Lett., 1984. 45: p. 668.
24. Kazmerski, L.L., Photovoltaics: A review of cell and module technologies. Renewable and sustainable energy reviews, 1997. 1: p. 71-170.
25. Chen, W.S., J.M. Stewart, and W.E. Devaney, 23th PVSC, 1993: p. 422.
26. Capasso, F. and G. Maragaritondo, Heterojunction band discontinuities:Physics and device application. Elsevier science, 1987.
27. Schaffler, R. and H.W. Schock, High mobility ZnO:Al thin films grown by reactive DC magnetron sputtering.
28. Schropp, R.E.I. and A. Madan, J. Appl. Phys., 1989. 66(5): p. 2027-2031.
29. Zhu, Z., MBE growth mechanisms of ZnSe:Flux ratio and substrate temperature. Journal of crystal growth, 1989. 95: p. 529-532.
30. Yao, T., Molecular beam epitaxy of ZnSe1-xTex. Journal of crystal growth, 1978. 45: p. 309-312.
31. Yao, T., Growth rate and sticking coefficient of ZnSe and ZnTe grown by molecular beam epitaxy. Japan. J. Appl. Phys., 1977. 16(2): p. 369-370.
32. Bhargava, R.N., Materials growth and its impact on devices from wide band gap II-VI compound. Journal of crystal growth, 1988. 86: p. 873-879.
33. Hedstrom, J., et al., ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance.
34. 莊達人, VLSI 製造技術. 1999.
35. Fonash, S.J., Solar cell device physics. Energy science and engineering resource,technology,management, 1981: p. 76-78.
36. Larach, S., R.E. Shrader, and C.F. Stocker, Anomalous variation of band gap with composition in znic sulfo- and Seleno-tellurides. Physical review, 1957. 108(3): p. 587-589.
37. Song, D., et al., Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering. Solar energy materials and solar cells, 2002. 73: p. 1-20.
38. Lee, J.C., et al., RF sputter deposition of the high-quality intrinsic and n-type ZnO window laers for Cu(In,Ga)Se2-based solar cell applications. Solar energy materials and solar cells, 2000. 64: p. 185-195.
39. Nunes, P., et al., Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering. Vacuum, 2002. 64: p. 293-297.
40. Fukuda, M., Optical semiconductor devices. 1999.
41. Moller, H.J., Semiconductors for solar cells. 1993

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code