Responsive image
博碩士論文 etd-0629114-201809 詳細資訊
Title page for etd-0629114-201809
論文名稱
Title
變構效應因子對人類血紅素結構及功能之影響
Influences of allosteric effectors on the structure and functionality of human hemoglobin
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-21
繳交日期
Date of Submission
2014-07-29
關鍵字
Keywords
變構效應因子、血紅素
Allosteric effector, UV-Vis absorption spectroscopy, Resonance Raman spectroscopy, Hemoglobin
統計
Statistics
本論文已被瀏覽 5762 次,被下載 412
The thesis/dissertation has been browsed 5762 times, has been downloaded 412 times.
中文摘要
-
Abstract
Hemoglobin (Hb) plays an important role in human bodies by serving as the oxygen-carrying protein. The oxygenation and deoxygenation processes are mainly achieved via the allosteric regulation between the high oxygen affinity, relaxed (R) state and the low oxygen affinity, tense (T) state. This thesis aims to investigate the influences of various allosteric effectors on the structures and functions of Hb by combining resonance Raman spectroscopy, UV-Vis absorption spectroscopy and computational docking approaches. The influences of several biologically important allosteric effectors have been investigated, including two homotropic effectors O2 and NO, and two heterotropic effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP). In addition, the influences of a prevalently used traditional Chinese medicine, Angelica sinensis (AS) on the structure and function of Hb have also been studied in this thesis due to its pharmacological significance in promoting the blood circulation and in treating numerous blood circulation dysfunction related syndromes and diseases. From the resonance Raman spectroscopic investigation, the bioactive components in AS responsible for the therapeutic efficacy of AS in altering the structure and function of Hb have been identified. With the aid of computational docking modeling, the structural character of the bioactive constituents and the active site on Hb has been discussed, from which a molecular mechanism was proposed for the first time to explain the therapeutic significance of AS.
目次 Table of Contents
Chapter 1. Introduction ..………………………………………..………………….. 1
1.1. Hemoglobin (Hb)……………….………............................................... 3
1.1.1. The Structure of Human Hemoglobin …..…………………...… 4
1.1.2. Hemoglobin Function ..………....……....…...…………………. 6
1.2. Allosteric Regulation ……..……….…………………..…….……….... 8
1.2.1. Allosteric States of Hb ……….…......……....…......…………... 9
1.2.2. Models of Allosteric Transition States ...……......……………. 11
1.2.3. Types of Allosteric Effectors ….…….…...…………...….…… 13
1.2.4. Pharmacological Effect of Allosteric Binding Sites …..…...… 15
1.3. Traditional Chinese Medicine ………...............………………….…. 16
1.3.1. Angelica sinensis (AS) .……………………………...…......... 17
1.3.2. Pharmacological Effects of AS .………...………………......... 18
1.3.3. The Major Components of AS ……….……………...…..….... 19
1.4. Spectroscopic Techniques …….….....……….………...…….……..... 22
1.4.1. Resonance Raman (RR) Spectroscopy ……..….…..…………. 22
1.4.2. Ultraviolet-Visible (UV-Vis) Absorption Spectroscopy …....... 23
1.5. Ligand-Protein Docking Modeling ………………………..…..…….. 24
1.6. Issues of Interest ….………..……....……..…..……………...……..... 25
Chapter 2. Experiments and Theoretical Modeling …….……….………………. 27
2.1. Introduction …….……..……...……..…...………………………...... 27
2.2. Sample Preparations ………...……….…………………..…….…..… 27
2.2.1. Hemoglobin Purification ………...……………………………. 27
2.2.2. Preparation of NO-Hb and SNO-Hb .….………………..…….. 28
2.2.3. Preparation of 2,3-BPG-treated Hb and IHP-treated Hb ..……. 29
2.2.4. Preparation of AS Plant Extract ……….……………………… 29
2.2.5. Preparation of AS-treated Hb and Phyto-treated Hb …....……. 30
2.3. Spectroscopic Measurements ……….....................................……….. 31
2.3.1. Resonance Raman (RR) Spectroscopy …...…..………….….... 31
2.3.2. Ultraviolet-Visible (UV-Vis) Absorption Spectroscopy …...… 32
2.4. Protein-Ligand Docking Modeling .…...…………......…....……….... 33
Chapter 3. The Effects of Homotropic and Heterotropic Effectors on Allosteric Properties of Hb ..…………………………….....……………………. 35
3.1. Introduction ………………..……………...….…………………….... 35
3.2. O2 and N2 Have the Reciprocal Effect in Hb Conformation ................. 36
3.3. Inter-subunit Interactions Changes Upon the Hb Conformational Transition …......................................................................................... 41
3.4. The Interaction of NO with Hb …..…………………...……............... 43
3.5. The Effects of Endogenous Effector 2,3-BPG in Hb .…....................... 51
3.6. IHP Also Stabilizes T State of Hb ……………….………………….. 54
3.7. Summary …..….…….………………………….………...………….. 56
Chapter 4. Angelica sinensis Stabilizes the Oxygenated Hb in the T State ….…. 58
4.1. Introduction ….…..……………………………….……….…….…… 58
4.2. Raman Spectral Features of AS-treated Hb ….….……………...……. 59
4.3. The Capacities of AS to Suppress the R State under the Oxygen Atmosphere ………………………………………………..……..….. 61
4.4. UV-Vis Absorption Spectra of AS-treated Hb ……….….….……….. 62
4.5. Summary ………..…………………………....………………….…... 65
Chapter 5. The Bioactive Components of AS Responsible for Inhibiting the R State of Oxygenated Hb ……………….………...…..….…….…….... 67
5.1. Introduction ….……………………………………..………………... 67
5.2. The Characteristics of AS’s Bioactive Phytochemical Components ... 67
5.3. RR Spectra of Phyto-treated Hb ….………...……….......…………… 70
5.4. The R State Inhibition Efficiency of Phyto-treated Hb under the Oxygen Atmosphere ……….…...…………………….…………………..…... 74
5.5. UV-Vis Absorption Spectra of Phyto-treated Hb ……..….…………. 76
5.6. Summary ……..…..……………………….......…………….…….…. 80
Chapter 6. The Structural Characters of 2,3-BPG and Bioactive Phytochemical Components of AS in Binding to the Active Sites of Hb ………..… 81
6.1. Introduction .......………………………....……………………...…... 81
6.2. The Intermolecular Interactions Between 2,3-BPG and Hb ……....... 82
6.3. The Intermolecular Interactions Between the Bioactive Components of AS and Hb ….……………..……..……………………..…............ 84
6.4. The Structural Significance of the Active Binding Sites upon
Interacting with Bioactive Phytochemical Components of AS …....... 91
6.5. Comparison between Phyto-Compounds of AS and 2,3-BPG on the Efficacy of Oxygen Transport Function ..……...………..…...………. 95
6.6. Summary …...………...……….………..………………………….... 97
Chapter 7. Conclusion .………………………………………………...………….. 98
References ………………………………………………………………………...… 102
參考文獻 References
1. Dias, J. et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 20, 1639–47 (2011).
2. Goodman, S. R., Kurdia, A., Ammann, L., Kakhniashvili, D. & Daescu, O. The human red blood cell proteome and interactome. Exp. Biol. Med. (Maywood). 232, 1391–408 (2007).
3. Hill, R. J., Konigsberg, W., Guidotti, G. & Craig, L. C. The structure of human hemoglobin. I. The separation of the alpha and beta chains and their amino acid composition. J. Biol. Chem. 237, 1549–54 (1962).
4. Fermi, G., Perutz, M. F., Shaanan, B. & Fourme, R. The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution. J. Mol. Biol. 175, 159–174 (1984).
5. Baldwin, J. & Chothia, C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol. 129, 175–220 (1979).
6. Weber, R. E., Fago, A. & Campbell, K. L. Enthalpic partitioning of the reduced temperature sensitivity of O2 binding in bovine hemoglobin. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 176C, 20–25 (2014).
7. Clementi, M. E., Condò, S. G., Castagnola, M. & Giardina, B. Hemoglobin function under extreme life conditions. Eur. J. Biochem. 223, 309–17 (1994).
8. Giardina, B., Messana, I., Scatena, R. & Castagnola, M. The multiple functions of hemoglobin. Crit. Rev. Biochem. Mol. Biol. 30, 165–96 (1995).
9. Storz, J. F. Hemoglobin function and physiological adaptation to hypoxia in high-altitude mammals. J. Mammal. 88(1), 24–31 (2007).
10. Oto, B. Respiration and hemoglobin. EMS Basics 1–4 (2011).
11. Motlagh, H. N., Wrabl, J. O., Li, J. & Hilser, V. J. The ensemble nature of allostery. Nature 508, 331–9 (2014).
12. Nagatomo, S., Nagai, M. & Kitagawa, T. A new way to understand quaternary structure changes of hemoglobin upon ligand binding on the basis of UV-resonance Raman evaluation of intersubunit interactions. J. Am. Chem. Soc. 133, 10101–10 (2011).
13. Perutz, M. F., Fermi, G., Luisi, B., Shaanan, B. & Liddington, R. C. Stereochemistry of Cooperative Mechanisms in Hemoglobin. ACS 20, 309–321 (1987).
14. Connie C. W., Hsia, M. D. Respiratory function of hemoglobin. Mech. Dis. 338, 239–247 (2009).
15. Song, X., Simplaceanu, V., Ho, N. T. & Ho, C. Effector-induced structural fluctuation regulates the ligand affinity of an allosteric protein: binding of inositol hexaphosphate has distinct dynamic consequences for the T and R states of hemoglobin. Biochemistry 47, 4907–15 (2008).
16. Reza, D. M. et al. Inhibition of human hemoglobin autoxidation by sodium n-dodecyl sulphate. J. Biochem. Mol. Biol. 35, 364–370 (2002).
17. Monod, J., Wyman, J. & Changeux, J.-P. On the Nature of Allosteric Transitions: A Plausible Mod. J. Mol. Biol. 12, 88–118 (1965).
18. Koshland, D. E., Némethy, G. & Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5, 365–85 (1966).
19. Yonetani, T. & Tsuneshige, A. The global allostery model of hemoglobin: an allosteric mechanism involving homotropic and heterotropic interactions. C. R. Biol. 326, 523–532 (2003).
20. Viappiani, C. et al. New insights into allosteric mechanisms from trapping unstable protein conformations in silica gels. Proc. Natl. Acad. Sci. U. S. A. 101, 14414–9 (2004).
21. Perutz, M. F., Fermi, G., Luisi, B., Shaanan, B. & Liddington, R. C. Stereochemistry of Cooperative Mechanisms in Hemoglobin. ACS 20, 309–321 (1987).
22. Berg, J., Tymoczko, J. & Stryer, L. Biochemistry, 7th edition. 11 (2011).
23. Gelin, B. R. & Karplus, M. Mechanism of tertiary structural change in hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 74, 801–5 (1977).
24. Xu, C., Tobi, D. & Bahar, I. Allosteric Changes in Protein Structure Computed by a Simple Mechanical Model: Hemoglobin T↔R2 Transition. J. Mol. Biol. 333, 153–168 (2003).
25. Perrella, M. & Russo, R. Allosteric proteins: lessons to be learned from the hemoglobin intermediates. News Physiol. Sci. 18, 232–6 (2003).
26. Kanaori, K. et al. T-quaternary structure of oxy human adult hemoglobin in the presence of two allosteric effectors, L35 and IHP. in Biochim. Biophys. Acta - Bioenerg. 1807, 1253–1261 (2011).
27. Sahu, S. C. et al. Insights into the solution structure of human deoxyhemoglobin in the absence and presence of an allosteric effector. Biochemistry 46, 9973–9980 (2007).
28. Laberge, M., Kövesi, I., Yonetani, T. & Fidy, J. R-state hemoglobin bound to heterotropic effectors: models of the DPG, IHP and RSR13 binding sites. FEBS Lett. 579, 627–32 (2005).
29. Landini, G. F., Di, A., Neto, V., Schwantes, A. R. & Luiza, M. Intraerythrocytic Organic Phosphates and Hemoglobins of Skua - Catharacta maccormicki ( Stercoraridae ) - at Two Different Stages of the Year in Relation to Antartic Migration. Braz. Arch. Biol. Technol. 56, 599–606 (2013).
30. Rezaei-Zarchi, S. et al. An Effector of Hemoglobin Structure: The Guanosine 3’, 5'-Triphosphate. Croat. Chem. Acta 85, 59–62 (2012).
31. Kitagawa, T., Abe, M. & Ogoshi, H. Resonance Raman spectra of octaethylporphyrinato-Ni(II) and meso-deuterated and 15N substituted derivatives. I. Observation and assignments of nonfundamental Raman lines. J. Chem. Phys. 69, 4516 (1978).
32. Zijlstra, W. G., Buursma, A. & Meeuwsen-van der Roest, W. P. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin. Chem. 37, 1633–1638 (1991).
33. Benesch, R. & Benesch, R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 26, 162–167 (1967).
34. Li, L. Opportunity and challenge of traditional Chinese medicine in face of the entrance to WTO (World Trade Organization). Chin. Inform. Trad. Chin. Med. 7, 7–8 (2000).
35. Ko, K.-M., Mak, D. H. ., Chiu, P.-Y. & Poon, M. K. . Pharmacological basis of (Yang-invigoration’ in Chinese medicine. Trends Pharmacol. Sci. 25, 3–6 (2004).
36. Sagar, S. M. & Wong, R. K. Chinese medicine and biomodulation in cancer patients — Part one. Curr. Oncol. 15, 42–48 (2008).
37. Qian, Y. et al. Metabolic fingerprinting of Angelica sinensis during growth using UPLC-TOFMS and chemometrics data analysis. Chem. Cent. J. 7, 42 (2013).
38. Deng, C., Ji, J., Wang, X. & Zhang, X. Development of pressurized hot water extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for determination of ligustilides inLigusticum chuanxiongand Angelica sinensis. J. Sep. Sci. 28, 1237–1243 (2005).
39. Zhang, W. L. et al. Chemical and biological assessment of angelica roots from different cultivated regions in a chinese herbal decoction danggui buxue tang. Evid. Based. Complement. Alternat. Med. 2013, 483286 (2013).
40. Graff, A. Dang Gui Root, Angelica sinensis (Oliv.) Diels, Standar of Analysis, Quality Control, and Therapeutics. 4 (2003).
41. Lao, S. & Lee, S. M. Danggui (当 归, Angelica Sinensis ). Nov. Sci. Publ. Inc. 1358, 417–440 (2008).
42. Wu, Y.-C. & Hsieh, C.-L. Pharmacological effects of Radix Angelica Sinensis (Danggui) on cerebral infarction. Chin. Med. 6, 32 (2011).
43. Deng, C., Ji, J., Wang, X. & Zhang, X. Development of pressurized hot water extraction followed by headspace solid-phase microextraction and gas chromatography-mass spectrometry for determination of ligustilides inLigusticum chuanxiongand Angelica sinensis. J. Sep. Sci. 28, 1237–1243 (2005).
44. Zhao, K. J. et al. Molecular genetic and chemical assessment of radix Angelica (Danggui) in China. J. Agric. Food Chem. 51, 2576–83 (2003).
45. Lao, S. C. et al. Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography–mass spectrometry coupled with pressurized liquid extraction. Anal. Chim. Acta 526, 131–137 (2004).
46. Wang, Q., Ding, F., Zhu, N., He, P. & Fang, Y. Determination of the compositions of polysaccharides from Chinese herbs by capillary zone electrophoresis with amperometric detection. Biomed. Chromatogr. 17, 483–8 (2003).
47. Chao, W.-W. & Lin, B.-F. Bioactivities of major constituents isolated from Angelica sinensis (Danggui). Chin. Med. 6, 29 (2011).
48. Yi, T., Leung, K. S.-Y., Lu, G.-H., Zhang, H. & Chan, K. Identification and comparative determination of senkyunolide A in traditional Chinese medicinal plants Ligusticum chuanxiong and Angelica sinensis by HPLC coupled with DAD and ESI-MS. Chem. Pharm. Bull. (Tokyo). 53, 1480–3 (2005).
49. Lu, G.-H. et al. Quantification of ligustilides in the roots of Angelica sinensis and related umbelliferous medicinal plants by high-performance liquid chromatography and liquid chromatography–mass spectrometry. J. Chromatogr. A 1046, 101–107 (2004).
50. Ooi, V. E. & Liu, F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 7, 715–29 (2000).
51. Strommen, D. P. & Nakamoto, K. Resonance raman spectroscopy. J. Chem. Educ. 54, 474 (1977).
52. Dieringer, J. a. et al. Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9–26 (2006).
53. Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips. J. Phys. Chem. C 111, 1733–1738 (2007).
54. Torres Filho, I. P., Terner, J., Pittman, R. N., Proffitt, E. & Ward, K. R. Measurement of hemoglobin oxygen saturation using Raman microspectroscopy and 532-nm excitation. J. Appl. Physiol. 104, 1809–17 (2008).
55. Polakovs, M., Mironova-Ulmane, N., Kurjane, N., Reinholds, E. & Grube, M. Micro-Raman scattering and infrared spectra of hemoglobin. Int. Soc. Opt. Eng. 7142, 714214.1–714214.8 (2008).
56. Sato, H., Chiba, H., Tashiro, H. & Ozaki, Y. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation. J. Biomed. Opt. 6, 366–70 (2001).
57. Spiro, T. G. & Strekas, T. C. Resonance Raman Spectra of Heme Proteins. Effects of Oxidation and Spin State. J. Am. Chem. Soc. 570, 338–345 (1974).
58. Upstone, S. L. Ultraviolet / Visible Light Absorption Spectrophotometry in Clinical Chemistry. Encycl. Anal. Chem. 1699–1714 (2000).
59. Wojdyla, M., Raj, S. & Petrov, D. Absorption spectroscopy of single red blood cells in the presence of mechanical deformations induced by optical traps. J. Biomed. Opt. 17, 97006–1 (2012).
60. Selim, N. S. & El-Marakby, S. M. Radiation-induced changes in the optical properties of hemoglobin molecule. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 76, 56–61 (2010).
61. Chelliah, V., Blundell, T. L. & Fernández-Recio, J. Efficient restraints for protein-protein docking by comparison of observed amino acid substitution patterns with those predicted from local environment. J. Mol. Biol. 357, 1669–82 (2006).
62. Warren, G. L. et al. A critical assessment of docking programs and scoring functions. J. Med. Chem. 49, 5912–31 (2006).
63. Kontoyianni, M., McClellan, L. M. & Sokol, G. S. Evaluation of docking performance: comparative data on docking algorithms. J. Med. Chem. 47, 558–65 (2004).
64. Sousa, F., Fernandes, P. A. & Joa, M. Protein–Ligand Docking : Current Status and Future. Proteins Struct. Funct. Bioinforma. 26, 15–26 (2006).
65. Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D. & Taylor, R. Comparing protein-ligand docking programs is difficult. Proteins 60, 325–32 (2005).
66. Morris, G. M. et al. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. 19, 1639–1662 (1998).
67. Yang, A.-P., Ma, M.-H., Li, X.-H. & Xue, M.-Y. Interaction of Irbesartan with Bovine Hemoglobin Using Spectroscopic Techniques and Molecular Docking. Spectrosc. An Int. J. 27, 119–128 (2012).
68. Kan, H.-I., Chen, I.-Y., Zulfajri, M. & Wang, C. C. Subunit disassembly pathway of human hemoglobin revealing the site-specific role of its cysteine residues. J. Phys. Chem. B 117, 9831–9 (2013).
69. Venkataraman, S., Martin, S. M., Schafer, F. Q. & Buettner, G. R. Detailed methods for the quantification of nitric oxide in aqueous solutions using either an oxygen monitor or EPR. Free Radic. Biol. Med. 29, 580–5 (2000).
70. Huang, Z. et al. Nitric oxide binding to oxygenated hemoglobin under physiological conditions. Biochim. Biophys. Acta 1568, 252–60 (2001).
71. Morris, G. M. et al. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 19, 1639–1662 (1998).
72. De Luca, A. C. et al. Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. Opt. Express 16, 7943–57 (2008).
73. Karumuri, S. R., Vijayshekar, J., Uma, V. & Rao, M. Vibrational spectra of distorted structure macro & nano molecules: An algebraic approach. J. Biophys. Chem. 3, 259–268 (2012).
74. Giovannetti, R. & Jamaluddin. in Macro to Nano Spectrosc. 87–108 (2012).
75. Hedberg, J. Conduction Band Mediated Charge Transfer for Highly Reduced, Catalytically Active State: A Comparison Between Thin Films and Colloidal Solutions. 7 (2011).
76. Park, S.-Y., Yokoyama, T., Shibayama, N., Shiro, Y. & Tame, J. R. H. 1.25 A resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms. J. Mol. Biol. 360, 690–701 (2006).
77. Friedman, J. M. et al. The Iron-proximal Histidine Linkage and Protein Control of Oxygen Binding in Hemoglobin. J. Biol. Chem. 258, 10564–10572 (1983).
78. John S. Olson at al. The role of the distal histidine in myoglobin and haemoglobin. Nature 336, 265–266 (1988).
79. Baldwin, J. & Chothia, C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol. 129, 175–220 (1979).
80. Chan, N. L., Rogers, P. H. & Arnone, A. Crystal structure of the S-nitroso form of liganded human hemoglobin. Biochemistry 37, 16459–64 (1998).
81. Jia, L., Bonaventura, C., Bonaventura, J., & Stamler, J. S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).
82. Sharma, V. S., Geibel, J. F. & Ranney, H. M. “Tension” on heme by the proximal base and ligand reactivity: conclusions drawn from model compounds for the reaction of hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 75, 3747–50 (1978).
83. Chan, N.-L., Kavanaugh, J. S., Rogers, P. H. & Arnone, A. Crystallographic analysis of the interaction of nitric oxide with quaternary-T human hemoglobin. Biochemistry 43, 118–32 (2004).
84. Kovalevsky, A. et al. Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography. Acta Crystallogr. D. Biol. Crystallogr. 66, 1144–52 (2010).
85. De Rosa, M. C., Carelli Alinovi, C., Galtieri, A., Russo, A. & Giardina, B. Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: new insights in gas transport and metabolic modulation. IUBMB Life 60, 87–93 (2008).
86. Charache, S., Grisolia, S., Fiedler, A. J. & Hellegers, A. E. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia. J. Clin. Invest. 49, 806–12 (1970).
87. Klocke, R. A. Oxygen Transport and 2,3-Diphosphoglycerate (DPG). Chest 62, 79–85 (1972).
88. Gray, R. & Gibson, Q. H. The Effect of Inositol Hexaphosphate on the Kinetics of CO and O 2 Binding by The Effect of Inositol of CO and 0, Binding Hexaphosphate on the Kinetics by Human Hemoglobin. J. Biol. Chem. 246, 7168–7174 (1971).
89. Laberge, M., Kövesi, I., Yonetani, T. & Fidy, J. R-state hemoglobin bound to heterotropic effectors: models of the DPG, IHP and RSR13 binding sites. FEBS Lett. 579, 627–32 (2005).
90. Tan, A. L., Noble, R. W., May, I. & Nobles, T. V. The Effect of Inositol Hexaphosphate on the Allosteric Properties of Carp Hemoglobin The Effect of Inositol Hexaphosphate on the Allosteric Properties of Carp Hemoglobin. J. Biol. Chem. 248, 7412–7416 (1973).
91. Teisseire, B. P., Ropars, C., Vallez, M. O., Herigault, R. A. & Nicolau, C. Physiological effects of high-P50 erythrocyte transfusion on piglets. J Appl Physiol 58, 1810–1817 (1985).
92. Bourgeaux, V. et al. Efficacy of homologous inositol hexaphosphate-loaded red blood cells in sickle transgenic mice. Br. J. Haematol. 157, 357–69 (2012).
93. Cheng, C.-W. et al. Ferulic Acid, an Angelica sinensis-Derived Polyphenol, Slows the Progression of Membranous Nephropathy in a Mouse Model. Evid. Based. Complement. Alternat. Med. 2012, 1–12 (2012).
94. Zhang, L. et al. Z-ligustilide extracted from Radix Angelica Sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats. J. Pharm. Soc. Japan 129, 855–9 (2009).
95. Hook, I. L. I. Danggui to Angelica sinensis root: Lost in translation? Are potential benefits of a TCM lost to European women? A review. J. Ethnopharmacol. 1–13 (2013). doi:10.1016/j.jep.2013.12.018
96. Deng, S. et al. Serotonergic Activity-Guided Phytochemical Investigation of the Roots of Angelica sinensis. J. Nat. Prod. 69, 536–541 (2007).
97. Paiva, L. B., Goldbeck, R., Dantas, W. & Squina, F. M. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Bralizian J. Pharm. Sci. 49, 395–411 (2013).
98. Benesch, R., Benesch, R. E. & Enoki, Y. The Interaction of Hemoglobin and Its Subunits with 2,3-Diphosphoglycerate. PNAS 61, 1102–1106 (1968).
99. Benesch, R., Benesch, R. E. & Yu, C. I. Reciprocal Binding of Oxygen and Diphosphoglycerate. PNAS 59, 526–532 (1967).
100. Samaja, M., Di Prampero, P. E. & Cerretelli, P. The role of 2,3-DPG in the oxygen transport at altitute. Respir. Physiol. 64, 191–202 (1986).
101. Lenfant, C. et al. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Clin. Invest. 47, 2652–6 (1968).
102. Arnone, A. X-ray Diffraction Study of Binding of 2,3-Diphosphoglycerate to Human Deoxyhaemoglobin. Nature 237, 146–149 (1972).
103. Schroeder, W. A., Shelton, J. R., Shelton, J. B. & Cormick, J. The Amino Acid Sequence of the Teta Chain of Human Fetal Hemoglobin. Biochemistry 2, 1353–7 (1963).
104. Kilmartin, J. V, Fogg, J. H. & Perutz, M. F. Role of C-terminal histidine in the alkaline Bohr effect of human hemoglobin. Biochemistry 19, 3189–83 (1980).
105. Viggiano, G. & Ho, C. Proton nuclear magnetic resonance investigation of structural changes associated with cooperative oxygenation of human adult hemoglobin. Proc. Natl. Acad. Sci. U. S. A. 76, 3673–7 (1979).
106. Johnson, M. E. & Ho, C. Effects of ligands and organic phosphates on functional properties of human adult hemoglobin. Biochemistry 13, 3653–61 (1974).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code