Responsive image
博碩士論文 etd-0704112-170554 詳細資訊
Title page for etd-0704112-170554
論文名稱
Title
台灣海峽及台灣河川中溶解態有機碳的分布與變化
Distributions and variations of dissolved organic carbon in the Taiwan Strait and Taiwanese rivers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-05-15
繳交日期
Date of Submission
2012-07-04
關鍵字
Keywords
台灣河川、季節、通量、台灣海峽、溶解態有機碳
flux, seasonal, Taiwan rivers, dissolved organic carbon, Taiwan Strait
統計
Statistics
本論文已被瀏覽 5852 次,被下載 1035
The thesis/dissertation has been browsed 5852 times, has been downloaded 1035 times.
中文摘要
海洋中的溶解態有機碳(Dissolved organic carbon, DOC)具有與大氣中二氧化碳相當的碳儲存量,而河口系統是碳循環中一個重要的組成因子,也是連接陸地與海洋之間的輸送帶,由於其特殊的化學、物理、地質及生物性質,使其成為最豐富之生態環境。DOC的研究對於化學海洋學和生物海洋學有重要的意義。本研究將對台灣海峽及台灣河川中DOC濃度分布及變化作探討,目的為了解DOC於不同季節輸出量對環境之影響。
台灣河川在乾、濕季時,DOC 濃度隨鹽度增加而遞減,而接近出海口測站DOC 濃度較低,是因受低濃度DOC的海水混合所導致。在河水流動的過程中,不斷會有陸源物質輸入,由DOC與Chl. a 、CH4及BOD皆呈現正相關來推論,生物作用與污染源輸入皆為DOC來源。台灣河川DOC(鹽度小於1)平均濃度分別為: 乾季245±254 μM, n=32 (42-1185 μM);濕季:183±151 μM, n=24 (18-565 μM)。本研究所採集的25條河川總DOC Flux為87.8 Gg C/yr,推算台灣整體河川DOC Flux為101.9 Gg C/yr (濕季輸出通量66.7 Gg C/yr;乾季輸出通量35.2 Gg C/yr)。台灣河川DOC Flux雖然只占熱帶地區的0.07%,但DOC單位面積(3.92 gC/m2/yr)輸出量是熱帶區域(2.13 gC/m2/yr)的1.8倍,推測台灣人口密度高,國土開發狀況遠高於其他區域,因此人類活動對於DOC輸出有著相當大的影響。
台灣海峽冬季與夏季,DOC與Sigma-T皆有顯著的負相關,顯示海峽內海水中的DOC分佈主要受到物理混合作用。海峽西側的測站受大陸沿岸流影響,有較高的DOC濃度,且隨著深度增加,DOC濃度有遞減趨勢。底水因受到較多黑潮水的影響,而黑潮水本身DOC濃度較低,所以底水濃度會較低。冬季DOC的分解速率高於夏天,推測冬季時受到大陸沿岸流影響,帶來較多營養鹽且海水垂直混合良好,可提供細菌生長所需物質,因此冬天耗氧率較高。台灣海峽夏季DOC輸出量(北測線:3.85×1012 mol C/yr;南測線:3.75×1012 mol C/yr)較冬季輸出量(北測線:3.69×1012 mol C/yr;南測線:2.84×1012 mol C/yr)高。夏季因河川流量大,會輸送較多的陸源有機物質至海峽中,且西南季風盛行,會有較多的南海水流向海峽內,所以夏季的DOC輸出量較冬季高。
Abstract
Dissolved organic carbon (DOC) is one of the largest pools of carbon in the ocean, and is of the same size as the carbon dioxide in the atmosphere. Estuaries connecting the land and the ocean are one of the most important DOC sources to the ocean, and play an important role in the global carbon cycle. Because of their complex chemical, physical, geological and biological properties, estuaries have become rich ecological environment. In this study, we investigated the seasonal distributions of DOC in the Taiwan Strait (TS) and Taiwanese rivers, aiming to understand the distributions and variations of DOC in different seasons.
The results show that DOC concentrations are generally the highest in the upper estuary, and then decrease downstream due to mixing with the low DOC seawater. The process of river flow constantly accumulates terrestrial material, and the DOC shows positive correlations with Chl. a, CH4 and BOD (Biochemical Oxygen Demand), suggesting that biological activities and pollutions could be sources of DOC in the estuary. The DOC concentrations (salinity<1) varied in dry (Nov.-Apr.) and wet (May-Oct.) seasons with ranges of 42-1185 μM (mean=245±254μM; n=32) and 18-565 μM (mean=183±151μM; n=24), respectively. The total DOC flux of 25 rivers is 87.8 Gg C/yr, which can be translated to the fluxes of all rivers in Taiwan to be 101.9 Gg C/yr. The amount of DOC flux in Taiwan is only about 0.07% of the tropical area, but the per unit area flux (3.92 gC /m2 /yr) is almost twice those of the tropical rivers (2.13 gC /m2 /yr). In Taiwan, the population density and land use are higher than the world average. Consequently, the impacts of the environment by human activities reveal the utmost export of DOC, and need further investigation.
Next, in the TS, the DOC shows significant negative correlations with Sigma-T, and the distributions of DOC are mainly controlled by physical mixing in both winter and summer. In the western TS, DOC concentration is relatively high, compared to the eastern part, and is because of low temperature and salinity, but high DOC coastal China current flowing from north to south. DOC concentration decreases with increasing depth owing to the intrusion at depth by the Kuroshio, which contains relatively low DOC.
In winter, the import of coastal China current brings more nutrients from north to south, and supports the growth of bacteria which depletes the DOC and oxygen. As the result, DOC decomposition rate is higher in winter than in summer. The TS’s DOC fluxes in summer (northern TS: 3.85×1012mol C/yr;southern TS: 3.75×1012mol C/yr) are higher than in winter (northern TS: 3.69×1012mol C/yr;southern TS: 2.84×1012mol C/yr). Main differences are due to the prevailing southwest monsoon winds in summer transporting more water from the South China Sea to the TS, and the river discharge brings more terrigenous organic matters into the TS. Therefore, the DOC export in summer is higher than in winter.
目次 Table of Contents
致謝.......................................................................................i
中文摘要...............................................................................ii
Abstract...............................................................................iv
目錄.....................................................................................vi
圖目錄................................................................................viii
表目錄..................................................................................x
第一章 前言..........................................................................1
第二章 研究材料與方法........................................................3
第三章 結果與討論-台灣河川部分........................................8
  3.1台灣河川乾、濕季定義.............................................8
  3.2 營養鹽(NO3-、NO2-、PO43-、SiO2)與鹽度關係..8
  3.3 DOC(溶解態有機碳)與鹽度.....................................8
3.4 DOC與營養鹽、Chl. a、CH4關係...........................9
  3.5 DOC與SS、POC、AOU關係.................................9
  3.6 DOC與BOD (生化需氧量)關係..............................10
  3.7台灣河川DOC濃度與DOC Flux..............................10
第四章 結果與討論-台灣海峽部分......................................21
4.1台灣海峽北部.........................................................21
4.2 台灣海峽南部........................................................23
  4.3台灣海峽討論.........................................................26
  4.4台灣海峽DOC Flux.................................................28
第五章 結論........................................................................30
參考文獻.............................................................................55
附錄一 台灣河川DOC濃度與DOC Flux表...........................60
附錄二 Huang, T.H., Fu, Y.H., Pan, P.Y., and Chen C.T.A., 2012. Fluvial carbon fluxes in tropical rivers. Current opinion in environmental sustainability, 4(2): 162-169.......60
參考文獻 References
中文部分
全國環境水質監測資訊網(http://wq.epa.gov.tw/WQEPA/Code/?Languages=)
內政部主計處(內政統計月報http://sowf.moi.gov.tw/stat/month/list.htm)
陳志華,1998。東海溶解態及顆粒態有機碳化學。中山大學海洋地質及化學研究所碩士論文,160頁。
刑&#63880;玉,2004。台灣海峽溶解有機氮、磷及營養鹽消耗程&#64001;分佈情形。國&#63991;中山大學海洋地質及化學研究所碩士&#63809;文,142頁。
曾筱君,2005。台灣週遭水域CH4和N2O的分佈。中山大學海洋地質及化學研究所碩士論文,160頁。
楊心枚,2006。高屏河海溶解態有機物質之光學與分佈特徵。國&#63991;中山大學海洋地 質及化學研究所碩士論文,96頁。
王國丞,2008。淡水河河口沿岸海域少毛&#63952;纖毛蟲&#63849;&#63870;之時空分布及其控制機制研究。國&#63991;臺灣海洋大學環境生物與漁業科學學系碩士學位&#63809;文,42頁。
張育嘉,2008。台灣海峽及附近海域之&#63946;場觀測分析。國&#63991;中山大學海洋生物科技暨資源研究所博士論文,139頁。
呂婉慈,2009。夏季東海與台灣海峽溶解態有機物質之分佈與光學特徵。中山大學海洋地質及化學研究所碩士論文,104頁。
游雅淳,2011。風場與潮汐對於臺灣海峽北部流量及營養鹽通量之影響。國立臺灣大學理學院海洋研究所碩士論文,66頁。
陳鎮東、王樹倫、羅立章、邢麗玉、林季儒,2002。海研三號721、755、761、791、海研二號806及海研一號631航次初步報告。中山大學海洋地質及化學研究所,第35號,419頁。
陳鎮東、王樹倫、羅立章,2003。海研一號653、672、海研二號871、1034、1082及海研三號824、851航次初步報告。中山大學海洋地質及化學研究所,第37號,236頁。
陳鎮東、王樹倫、王冰潔、羅立章、許筱薇,2006。海研一號694、695、713、725,海研二號1139、1180、1182及海研三號896、901、948、983航次初步報告。中山大學海洋地質及化學研究所,第38號,439頁。
英文部分
Borges, A., Delille, B., and Frankignoulle, M., 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophysical Research Letters, 32, 14.
Cai, W.J., and Dai, M.H., 2004. Comment on Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 306, 1477.
Cai, W.J., Dai, M.H., and Wang, Y.C., 2006. Air – sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophysical Research Letters, 33, 12.
Carlson, C.A., and Ducklow, H.W., 1995. Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variation. Deep-Sea Research, 42, 639-656.
Carlson, C.A., 2002. Production and removal processes. In: Biogeochemistry of Marine Dissolved Organic Matter. Ed: Hansell, D.A., Carlson, C.A., Academic Press, USA., 91.-151.
Chen, C.T.A., and Wang, S.L., 1998. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea. Journal Geophysical Research, 103, 12683-12688.
Chen, C.T.A., 2003. Rare northward flow in the Taiwan Strait in winter: a note. Continental Shelf Research, 23, 387-391.
Chen, C.T.A., and Borges, A.V., 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and nearshore ecosystems as sources of atmospheric CO2. Deep-Sea Research II. Topical Studies in Oceanography, 56(8-10): 578-590.
de Angelis, M.A., and C. Lee., 1994. Methane production during zooplankton grazing on marine phytoplankton. Limnology and Oceanography, 39, 1298-1308.
Degens, E.T., Kempe, S., and Richey, J.E., 1991. Summary: biogeochemistry of major world rivers. In: Degens, E.T., Kempe, S., Richey, J.E., (Eds.), Biogeochemistry of Major World Rivers. SCOPE Report 42. Wiley, Chichester, New York, pp. 323–347 .
Gu&eacute;guen, C., Guo, L., and Tanaka, N., 2005. Distributions and characteristics of colored dissolved organic matter in the Western Arctic Ocean. Continental Shelf Research, 25, 1195-1207.
Guo, L., Coleman Jr, C.H., and Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Marine Chemistry, 45, 105-119.
He, B.Y., and Dai, M.H., 2010. Distribution, degradation and dynamics of dissolved organic carbon and its major compound classes in the Pearl River estuary, China. Marine Chemistry, 119, 52–64.
Hedges, J.I., 1992. Global biogeochemical cycles - progress and problems. Marine Chemistry, 39: 67-93
Huang, T.H., Fu, Y.H., Pan, P.Y., and Chen, C.T.A., 2012. Fluvial carbon fluxes in tropical rivers. Current Opinion in Environmental Sustainability, 4(2): 162-169.
Hung, C.C., Gong, G.C., Ko, F.C., Chen, H.Y., Hsu, M.L., Wu, J.M., Peng, S.C., Nan, F.H., Yeager, K.M., and Santschi, P.H., et al., 2010. Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Mar Pollut Bull, 60(7): 1010-7.
Hung, J.J., and Lin, P.L., 1995. Distribution of dissolved organic carbon in the continental margin of northern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 6, 13-26.
Hung, J.J., Lin, P.L., and Liu, K.K., 2000. Dissolved and particulate organic in the southern East China Sea. Continental Shelf Research, 20, 545-569.
Hung, J.J., Wang, S.M., and Chen, Y.L., 2007. Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the Northern South China Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(14-15): 1486-1503.
IGBP, 1995. LOICZ: Implementation Plan, eds., Pernetta J.C., and Milliman, J.D., IGBP Report No. 33, Stockhlom.
Jan, S., Wang, J., Chern, C.S., and Chao, S.Y., 2002. Seasonal variation of the circulation in the Taiwan Strait, Journal of Marine Systems, 35, 249-268.
Jan, S., Tseng, Y.H., and Dietrich, D.E., 2010. Sources of Water in the Taiwan Strait. Journal of Oceanography, 66, 211-221.
Liang, W.D., Tang, T.Y., Yang, Y.J., Ko, M.T., and Chuang, W.S., 2003. Upper-ocean currents around Taiwan, Deep-Sea Research Part II-Topical Studies in Oceanography, 50, 1085-1105.
Liu, C.S., Liu, S.Y., Lallemand, S.E., Lundberg, N., and Reed, D.L., 1998. Digital elevation model offshore Taiwan and its tectonic implications, Terrestrial Atmospheric and Oceanic Sciences, 9, 705-738.
Liu, K.K., Chao, S.Y., Shaw, P.T., Gong, G.C., and Chen, C.C., 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research Part I, 49, 1387-1412.
Ludwig, W., and Probst, J.L., 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 10, 23–41.
Muller-Karger, F., Varela, R., Thunell, R., Luerssen, R., Hu, C., and Walsh, J., 2005. The importance of continental margins in the global carbon cycle. Geophysical Research Letters, 32, L01602.
Meybeck, M., 1982. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 282, 401–450.
Mostofa, K.M.G., and Sakugawa, H., 2003. Spatial and temporal variation of hydrogen peroxide in stream and rival waters: Effect of photo-bio-physio-chemical processes of aquatic matters. Abstracts of the 13th Annual V. M. Goldschmidt Conf. Suppliment to Geochim. Cosmochim. Acta 67(18S), A309.
Nagata, T., 2002. Production mechanisms of dissolved organic matter. In: Microbial Ecology of the Oceans, Ed.: Kirchman, D.L., Wiley, USA., 121–152.
Nielsen, T.G., and Ki&oslash;rboe, T., 1991. Effects of a storm event on the structure of the pelagic food web with special emphasis on planktonic ciliates, Journal of Plankton Research, 13(1), 35-51.
Riley, J.P., and Chester, R., 1971. Dissolved and particulate organic compound in the sea. In Introduction to Marine Chemistry, Academic Press, London, 182-218.
Stedmon, C.A., Markager, S., and Bro, R., 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry 82, 239-254.
Strickland, J.D.H., and Parsons, T.R., 1972. A Practical Handbook of Seawater Analysis. Bulletin Fisheries Research Board of Canada, 2nd Ed., No. 167, 311 pp.
Thomas, H., Bozec, Y., Elkalay, K., and de Baar, H.J., 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 304(5673): 1005-8.
Welschmeyer, N.A., 1994. Fluorometric analysis of chlorophyll a on the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39, 1985-1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code