Responsive image
博碩士論文 etd-0712102-153519 詳細資訊
Title page for etd-0712102-153519
論文名稱
Title
從高屏峽谷水文之時空變化來探討懸浮物質傳輸的機制
Inferred Suspended Sediment Transport Process in the Head Region of Kao-Ping Submarine Canyon Based on Temporal and Spacial Hydrographic Observations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-27
繳交日期
Date of Submission
2002-07-12
關鍵字
Keywords
lisst-100、水文調查、海底峽谷、高屏溪
lisst-100, submarine canyon, kao-ping river, hydrographic observation
統計
Statistics
本論文已被瀏覽 5803 次,被下載 1034
The thesis/dissertation has been browsed 5803 times, has been downloaded 1034 times.
中文摘要
本研究之目的在於從高屏海底峽谷和高屏溪口直接銜接的特殊地形,探討海底峽谷受到河流豐枯水季輸出的影嚮,透過水文(溫、鹽等)、流場及懸浮沉積顆粒濃度(Suspended Sediment Concentration : SSC) 的時空觀測,描繪海底峽谷在豐枯水季不同季節的變化和懸浮沉積顆粒在傳輸過程,同時經由各種參數(Richard Number、Stability E、r/c)的計算進一步探討峽谷內內波作用,以期建立高屏海底峽谷的水文背景環境資料。實驗中透過海研三號研究船對峽谷縱軸進行剖面觀測,同時收集CTD、ADCP及Transmissometer的資料,資料收集以高屏溪的豐枯水季為分界,分別得到豐水季(CR536、CR548、CR552、CR634、CR639)和枯水季(CR572、CR598、CR608)等共8個航次的資料。
根據溫度的時空觀測剖面,在CR536與CR548的航次中,發現峽谷地形轉折處的等溫線急劇變化,而形成比週遭低溫的冷水渦(cold core),同一航次所觀測到的密度場和SSC分佈,也在相同地點發現密度的擾動和濃度高值,其形成原因來自溫度的混合作用,在豐水季峽谷的層化狀態較強時,黑潮水入侵高屏峽谷導致溫度的上升,以及來自大洋深層傳進峽谷的內波作用,在峽谷地形轉折處因地形變化而產生能量的聚焦,所導致的密度擾動,產生懸浮顆粒濃度的高值,相對的,枯水季由於層化作用減弱,密度場的分佈形成較大的梯度,因此產生較強的密度流場,而峽谷流場的變化與潮汐有關,峽谷上層流場作用大於潮汐,峽谷下層則受密度流所主導,同時,當近岸潮汐為漲潮時段,峽谷表層流為南向流,退潮時段則為北向流。
此外,在豐水季(7/99)所觀測到SSC的濃度高值區,放置一串由Sediment Trap、RCM、S700和LISST-100組成的觀測串列,進行長達一個月(6/00∼7/00)的溫度、鹽度、流場和懸浮顆粒觀測。從時序觀測中發現低溫訊號與北向流場是一致變化的,峽谷底層有著像幫浦的機制,將深海低溫海水往峽谷頭部傳輸,同時在懸浮顆粒的觀測,在上層(195 m)、中層(245 m)和底層(285 m)所得到的懸浮顆粒觀測,從其不同比例的粒徑組成,可以發現在上層有來自兩側陸棚的懸浮顆粒(Sand),而中層和底層則以再懸浮沉積顆粒為主(Silt、Clay),且由於豐水季的層化結構,來自陸棚的懸浮顆粒(Sand)大多沿水平方向傳輸至深海。
為了進一步了解峽谷內各環境因子間的關係性,透過EOF的計算來解析其時空變化的分佈,得到最主要的二種形式結果,分別為高屏溪季節性影響和水動力平衡。


Abstract
Kao-ping submarine canyon is straightly connected with Kao-ping River. Thus, it is influenced by the river’s discharge. In order to investigate this seasonal difference in the canyon, we conducted several researches, which were based on temporal and spacial observations of the hydrological and dynamical characteristic of the canyon. We also studied the transport of suspended sediment particles in the canyon according to the distribution of SSC (suspended sediment concentration). In our research, we made along-canyon profile observations. We collected data by using CTD, ADCP and Transmissometer on R/V Ocean Researches Vessel Ⅲ. The data include flood season cruises (CR536, CR248, CR552, CR634 and CR639), and dry season cruises (CR572, CR598, CR608).
Based on the temporal and spacial observations, in June and July 1999 we found a cold pool at the location where canyon topography changed sharply. We also found the density disturbance and high concentration at the same location. When the tidal current was landward in the deep canyon, we can observes upwelling in the head region of the canyon. Conversely, we can observe downwelling while the tidal current was seaward. Moreover, we observed a strong vertical flow in the dry season, which can make resuspended easily.
Besides, we deployed an instrument covey, including sediment traps, Recording Current Meter (RCM), wave gauge (S700) and Laser In-Suit Scattering and Transmissiometry (LISST-100), at the location where we previously observed SSC localizes high for one month (from June to July 2000) to investigate the temporal relations among temperature, salinity, flow, and suspended particles. From this time series observation we found a coincidence between cold temperature signal and the northward flow. It showed that the cold water from deep sea was transported to the head region of the canyon by a ‘Pump’ process. We also observed the suspended particles at the top (195m), middle (245m), and the bottom (285m) of the ocean. According to their different sizes, we found that the upper depth has more sands which were from the continental shelf, and the middle and lower depth have more silt and clay.
Subsequently, we used Empirical Orthogonal Function (EOF) analysis to explain the relationship among hydrological and flow factors of the canyon. We concluded that two major modes to explain the observed relationship: Submarine canyon seasonal effect, and dynamic stability.


目次 Table of Contents
章次 . 頁次

中文摘要………………………………………………………………….……….....i
英文摘要………………………………………………………………….………...iii
目錄……………………………………….……………………………….……...…iv
表目錄……………………………………………………………………...……….vii
圖目錄……………………………………………………………………….……..viii
第一章、序論…………………………………………………………….1
第一節、前言…………………………………………………………….………1
第二節、研究目地………. ………………………………………………………3
第二章、研究區域……………………………………………………….6
第一節、高屏溪流域特性……………………………………………………….6
第二節、高屏峽谷的成因和地形特徵………………………………………….6
第三節、前人研究………………………………………………………………10
第三章、實驗設計理念與分析方法……………………………………11
第一節、 實驗設計理念與測線規劃…………………………………………11
第二節、 研究設備……………………………………………………………13
3-2-1、CTD..……………………………………………………………..13
3-2-2、ADCP…………………………………………………………….13
3-2-3、Transmissometer(透光度探針)…………………………………..14
3-2-4、LISST-100………………………………………………………..15
3-2-5、RCM-8(Recording Current Meter)…………………………….…17
3-2-6、Sediment Trap..……………………………………………………17
第三節、時空觀測………………………………………………………………17
3-3-1、季節性觀測(時空變化剖面)……………………………………..18
3-3-2、連續觀測(錨錠)…………………………………………………..18
第四節、長期連觀測……………………………………………………………22
第五節、時序分析………………………………………………………………22
3-5-1、Tidal Analysis…………………………………………………….22
3-5-2、Spectral Analysis…………………………………………………25
第六節、水動力參數計算及地形效應…………………………………………26
第七節、EOF多變數分析………………………………………………………27
第四章、觀測結果………………………………………………………31
第一節、近岸觀測結果…………………………………………………………31
4-1-1、近岸流場…………………………………………………………25
4-1-2、近岸水位與溫度場………………………………………………33
第二節、海底峽谷時序觀測結果………………………………………………35
4-2-1、溫、鹽與流場…………………………………………………….35
4-2-2、懸浮沉積物粒徑分析……………………………………………42
第三節、峽谷水文環境…………………………………………….…………..46
4-3-1、流場………………………………………………………………50
4-3-2、溫度場……………………………………………………………53
4-3-3、鹽度場……………………………………………………………56
4-3-4、密度場……………………………………………………………60
4-3-5、SSC……………………………………………………….………64
第四節、峽谷水動力狀態及地形效應………………………………………..67
4-4-1、穩定度(Stability E)………………………………………………67
4-4-2、Richard Number………………………………………….………71
4-4-3、地形效應…………………………………………………………71
第五章、討論……………………………………………………………75
第一節、峽谷水文環境…….………………..…...…………………………….75
第二節、峽谷懸浮沉積物傳輸…………………………………………………77
第三節、水動力結果及地形效應………………………………………………81
第四節、EOF分析結果……..…………………………………………………84
5-4-1、高屏溪季節性影響………………………………………………84
5-4-2、水動力平衡………………………………………………………87
第六章、結論………………………………………………….……...…92
第一節、高屏海底峽谷的水文特性……………………………………………92
6-1-1、季節性變化………………………………………………………92
6-1-2、潮汐作用…………………………………………………………92
第二節、高屏溪輸出對海底峽谷的影響………………………………………93
第三節、峽谷動力環境……………………………………..…………………93
6-3-1、層化結構…………………………………………………………94
6-3-2、內潮波作用………………………………………………………94
6-3-2、水力平衡結果……………………………………………………96
第七章、參考文獻………………………………………………………97

表目錄
表一、高屏海底峽谷觀測航次與觀測項目……………….………….13
表二、高屏海域連續觀測之儀器設定………………………………..25
表三、近岸流場潮流分析結果………………………………………..33
表四、近岸水位潮汐分析結果………………………………………...35
表五、近岸溫度潮汐分析結果…………………………………………35
表六、高屏峽谷溫度時序觀測潮汐分析結果…………………………42
表七、峽谷內流場潮流分析結果……………………………………...42
表八、Mode 1…………………………………………………………..87
表九、Mode 2…………………………………………………………..91

圖目錄
圖1-1、近岸沉積系統(Komar, 1976)………………………………..……….…..…2
圖1-2、河流輸出沉積物傳輸過程中的四個階段(Wright and Nittrouer, 1995)..…2
圖1-3、海底峽谷附近之沉積物傳輸過程示意圖(from Gardner, 1989)..…………4
圖1-4、觀測期間啟德颱風路徑圖(from 中央氣象局, 2000)..……………………5
圖2-1、高屏溪月平均流量和含沙量(水資源局, 1996)……………………………7
圖2-2、研究期間高屏溪日流量及各航次觀測時間……………………………….8
圖2-3、研究區域…………………………………………………………………….9
圖3-1、實驗設計與分析方法流程圖…………………………………………..….12
圖3-2、Transmission & SSC…………………………………………………..……16
圖3-3、後報潮流場…………………………………………………………..…….19
圖3-4、測線規劃…………………………………………………………..….20、21
圖3-5、Trap結構示意圖…………………………………………………..……….23
圖3-6、EOF處理步驟…………………………………………………….……….29
圖3-7、EOF前兩種特徵型, 可解釋資料百分比………………………..……….30
圖4-1、近岸流場分析結果………………………………………………………..32
圖4-2、近岸水位與溫度場………………………………………………………..34
圖4-3、高屏海底峽谷溫度時序觀測…………………………………………..…36
圖4-4、高屏海底峽谷溫度變化趨勢(25h Moving average)…………………...…38
圖4-5、高屏峽谷溫度時序分析……………………………………………..……39
圖4-6、峽谷鹽度及流場時序觀測………………………………………..………40
圖4-7、峽谷流場時序分析……………………………………………………..…41
圖4-8、高屏溪口與峽谷懸浮顆粒觀測結果……………………………..………43
圖4-9、四種粒徑群即時體積濃度變化(Wentworth scale)……………….………45
圖4-10、Sediment Trap與LISST-100四種顆粒粒徑群分比變化………………47
圖4-11、T-S分佈圖(6/99~3/00)……………………………………………...48、49
圖4-12、測站J溫鹽分佈圖與南海水及黑潮水…………………………….……76
圖4-13、觀測流場……………………………………………………………51、52
圖4-14、溫度…………………………………………………………………54、55
圖4-15、連續12小時溫度剖面與潮流…………………………………..………57
圖4-16、鹽度…………………………………………………………………58、59
圖4-17、連續12小時鹽度剖面與潮流………………………………..…………61
圖4-18、密度…………………………………………………………………62、63
圖4-19、連續12小時密度剖面與潮流……………………………….…………76
圖4-20、SSC…………………………………………………………………65、66
圖4-21、連續12小時SSC剖面與潮流…………………………………………68
圖4-22、Stability E………………………………………………………..…69、70
圖4-23、Richard Number…………………………………………..………………72
圖4-24、地形效應…………………………………………………………………73
圖5-1、N-S潮流與溫度連續變化…………………………………………...……76
圖5-2、非潮汐溫度頻譜分析……………………………………………..………78
圖5-3、SSC與密度場…………………………………………………………79、80
圖5-4、流場與密度場………………………………………………………………82
圖5-5、EOF結果(Eigen Weighting) :Mode 1…………………………………85、86
圖5-6、EOF結果(Eigen Weighting) :Mode 2…………………………………88、89
圖6-1、峽谷動力結構示意圖………………………………………………………95
參考文獻 References
馮世墩(1988):高屏峽谷底層流之變化。國立台灣大學海洋研究所碩士論文。
吳德泰(1996):高屏峽谷水文特性之調查及研究。國立中山大學海洋資料學系碩士論文。
劉坤章(1999):從沉物粒徑的分佈來看高屏溪口近岸海域皂沉積物傳輸。國立中山大學海洋地質及化學研究所碩士論文。
張育嘉(2000):高屏峽谷及附近海域之流場觀測。國立中山大學海洋資料學系碩士論文。
Agrawal, Y.C., Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Marine Geology, 168:89-114.
Beer, R.M. and Gorsline, D.S., 1971. Distribution, composition, and transport of suspended sediment in Redondo Submarine Canyon and vicinity (California). Marine Geology, 10, 153-175.
Bunt, A.C., Larcombe, P., Jago, C.F., 1999. Quantifying the response of optical backscatter devices and transmissometers to variations in suspended particulate matter. Continental Shelf Research, 19:1199-1220.
Chow J., Lee J.S., Liu C.S., Lee B.D., Watkins J.S., 2001. A submarine canyon as the cause of a mud volcano: Liuchieuyu Island on Taiwan. Marine Geology, 176:55-63.
Drake, D.E., Hatcher, P.G. and Keller, G.H., 1978. Suspended paeticulate matter and mud deposition in upper Hudson Submarine Canyon. In: D. J. Stanley and G. Kelling (Editors), Sedimentation in Submarine Canyons, Fans, and Trenches. Dowden, Futchinson and Ross, Stroudburg, Pa., pp.33-41.
Durrieu de Madron, X., 1994. Hydrography and nepheloid structures in the Grand-Rhone canyon. Continental Shelf Research, Vol.14, No.5, pp.457-477.
Friendrichs, C.T., Wright, L.D., Hepworth, D.A., Kim, S.C., 2000. Bottom-boundary-layer processes associated with fine sediment accumulation in coastal seas and bays. Continental Shelf Research, 20:807-841.
Garvine, R.W. and Monk, J.D., 1974. Frontal Structure of River Plume. Journal of Geophysical Research, Vol.79, No.15, p.2251-2259.
Granata, T.C., Vidondo, B., Duarte, C.M., Satta, M.P., Garcia, M., 1999. Hydrodynamics and particle transport associated with a submarine canyon off Blanes (Spain), NW Mediterranean Sea. Continental Shelf Research, 19:1249-1263.
Hatcher, A., Hill, P., Grant, J., Macpherson, P., 2000. Spectral optical backscatter of sand in suspension: effects of partical size, composition and colour. Marine Geology, 168:115-128.
Hickey, B., Baker, E. and Kachel, N., 1986. Suspended particle movement in and around Quinault Submarine Canyon. Marine Geology, 71:35-83.
Hotchkiss, F.S. and Wunsch, C., 1982. Internal waves in Hudson Canyon with possible geological implications. Deep-Sea Research, Vol.29, No.4A, pp.415-442.
Klinck, J.M., 1996. Circulation near submarine canyons: A modeling study. Journal of Geophysical Research, Vol.101, No.C1, p.1211-1223.
Lafuente, J.G., Sarhan, T., Vargas, M., Vargas, J.M. and Plazl, F., 1999. Tidal motions and tidally induced fluxes through La Linea submarine canyon, western Alboran Sea. Journal of Geophysical Research, Vol.104, No.C2, p.3109-3119.
Lin, P. and Liu, P.L. -F., 1998. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. Journal of Geophysical Research, Vol.103, No.C8, p.15677-15694.
Liu, A.K. and Chang, Y.S., 1998. Evolution of nonlinear internal waves in the East and South China Seas. Journal of Geophysical Research, Vol.103, No.C4, p.7995-8008.
Mercedes, M., La Violette, P.E., Tintore, J., 1990. Coastal flow modification by submarine canyons along he NE Spanish coast. SCI.MAR., 54(4):343-348.
Miller M.C., I.N. Mccave and P.D. Komar, 1977. Threshold of sediment motion under undirectional currents. Sedimentology, 24, 507-527.
Monaco, A., Courp, T., Heussner, S., Carbonne, J., Fowler, S.W., and Deniaux, B., 1990. Seasonality and composition of particulate fluxes during ECOMARGE-I, western Gulf of Lions. Continental Shelf Research, Vol.10, Nos 9-11, pp. 959-987.
Petruncio, E.T., Rosenfeld, L.K. and Paduan, J.D., 1998. Observation of the Internal Tide in Monterey Canyon. Journal of Physical Oceanography, p.1873-1903.
Puig, P., Palanques, A., 1998. Nepheloid structure and hydrographic control on the Barcelona continental margin, northwestern Mediterranean. Marine Geology, 149:39-54.
Snyder, G.W. and Carson, B., 1986. Bottom and suspended particle sizes: implications for modern sediment transport in Quinault submarine canyon. Marine Geology, 71:85-105.
Shepard F.P., N.F. Marshall, P.A. Mcloughlin and G. G. Sullivan (1979) Currents in submarine canyons and other sea valleys. The American Association of Petroleum Geologists, Studies in Geology, 8, pp.173.
Southard J.B., R.A. Young and C.D. Hollister (1971) Experimental erosion of calcareous ooze. Journal of Geophysical Research, 76, 5903-5909.
Thorbjarnarson, K.W., Nittrouer, C.A. and Demaster, D.J., 1986. Accumulation of modern sediment in Quinault Submarine Canyon. Marine Geology, 71:107-124.
Tsai, C., 1996. An assessment of a time-of-transition laser sizer in measuring suspended particles in the ocean. Marine Geology, 134:95-112.
Wang, J. and Chern, C., 1996. Preliminary observations of internal surges in Tung-Kang. ACTA Oceanographica Taiwanica, Vol.35, No 1, pp.17-40.
Wright, L.D., Nittrouer, C.A., 1995. Dispersal of River Sediments in Coastal Seas: ix Contrasting Cases. Estuarine, Vol.18, No.3, p.494-508.
Wroblewski J.S. and E.E. Hofmann, 1989. U. S. interdisciplinary modeling studies of coastal-offshore exchange process: Past and future. Progress in Oceanography, 23, 65-99.
Yu, H. and Song, G., 2000. Submarine physiographic features in Taiwan region and their geological significance. Journal of the Geological Society of China, Vol.43, No.2, p.267-286.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code