Responsive image
博碩士論文 etd-0715106-161012 詳細資訊
Title page for etd-0715106-161012
論文名稱
Title
強化平均效率之預失真波包追隨式無線發射機
Average-Efficiency Enhancement of Wireless Transmitters Using a Predistorted Envelope-Following Approach
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-27
繳交日期
Date of Submission
2006-07-15
關鍵字
Keywords
波包追隨發射機、預失真器、強化平均效率
Predistorter, Transmitter based on the Envelope-Following Architecture, Average-Efficiency Enhancement
統計
Statistics
本論文已被瀏覽 5764 次,被下載 0
The thesis/dissertation has been browsed 5764 times, has been downloaded 0 times.
中文摘要
本論文主要為實踐一強化平均效率並具高線性度之無線發射機。本發射機採用波包追隨架構,使用E類功率放大器取代傳統波包追隨架構所使用之線性功率放大器,有效提升發射機之平均效率。且利用FPGA實踐基頻數位電路,產生基頻IQ與波包訊號,可提供精確調制品質與充裕調制頻寬,更有易積體化之優勢。另外針對E類功率放大器之Vdd/AM非線性現象實踐一預失真電路,有效改善發射機線性度,使發射機於不同輸出功率情況下,皆能有兼具高平均效率與高線性度之優異表現。以CDMA2000 1x系統為測試規範,輸入基頻符號率為1.2288 Msps之QPSK調制訊號,使用InGaAs pHEMT製程實踐之E類功率放大器於發射機中,測得平均調制輸出功率於7 ~ 21 dBm範圍內,平均效率為30 ~ 44 %,平均功率增加效率為23 ~ 38 %,ACPR維持44 dBc以上,EVM低於4 %;使用GaAs HBT製程實踐之E類功率放大器於發射機中,測得平均調制輸出功率於4 ~ 18.5 dB範圍內,平均效率為20 ~ 40 %,平均功率增加效率為16 ~ 35 %, ACPR維持43 dBc以上,EVM低於5 %。
Abstract
This thesis aims to implement a linear wireless transmitter based on the envelope-following architecture. A class-E PA is utilized to replace the linear PA used in the traditional envelope-following transmitter for enhancing the average efficiency. The transmitter relies on a digital processor realized by FPGA to generate the baseband IQ signal and corresponding envelope signal. This way can not only achieve more accurate modulation accuracy and wider modulation bandwidth, but also use less analog components for the future convenience of realizing single-chip integration when compared to the traditional envelope-following transmitter. Furthermore, this thesis implements a predistorter in the digital processor to compensate the Vdd/AM distortion of class-E amplifier. Therefore, this transmitter can simultaneously achieve high efficiency and high linearity over a wide input power range. From the results measured in transmitting a QPSK-modulated CDMA2000 1x signal at a chip rate of 1.2288 Mcps, the transmitter incorporating an InGaAs pHEMT class-E PA can achieve 30~44 % in average efficiency (23~38 % in average PAE) with above 44 dBc in ACPR and below 4 % in EVM in the average modulated output power range from 7 to 21 dBm, while the transmitter incorporating a GaAs HBT can achieve 20~40 % in average efficiency (16~35 % in average PAE) with above 43 dBc in ACPR and below 5 % in EVM in the average modulated output power range from 4 to 18.5 dBm.
目次 Table of Contents
第一章 緒論 1
1.1 背景簡介 1
1.2 章節規劃 9
第二章 射頻電路晶片設計 10
2.1 互補切換式直流轉換器架構與設計方法 10
2.1.1 架構簡介 10
2.1.2 設計流程 11
2.2 互補切換式直流轉換器模擬與晶片量測結果 12
2.2.1 模擬結果 12
2.2.2 晶片量測結果 17
2.3 E類功率放大器架構與設計方法 22
2.3.1 架構簡介 22
2.3.2 設計流程 24
2.4 E類功率放大器模擬與晶片量測結果 25
2.4.1 InGaAs pHEMT製程實踐之晶片模擬與量測結果 25
2.4.2 GaAs HBT製程實踐之晶片模擬與量測結果 31
第三章 基頻數位電路設計 36
3.1 基頻數位電路架構簡介 36
3.2 各級電路元件設計 37
3.2.1 IS-95 FIR數位濾波器 37
3.2.2 半頻帶濾波器 38
3.2.3 採用CORDIC演算法之波包產生器 39
3.2.4 線性內插器 42
3.2.5 ㄧ階差異積分調制器 43
3.3 預失真器設計 43
3.3.1 針對pHEMT E類功率放大器設計之預失真器 44
3.3.2 針對HBT E類功率放大器設計之預失真器 49
3.4 數位類比轉換器模組 51
3.5 基頻數位電路輸出訊號量測結果 53
3.5.1 預失真器功能關閉時之基頻IQ訊號量測結果 53
3.5.2 預失真器功能打開時之基頻IQ訊號量測結果 54
第四章 預失真波包追隨發射機整合量測結果 56
4.1 預失真波包追隨發射機整合量測介紹 56
4.2 使用pHEMT E類功率放大器之發射機整合量測結果 57
4.3 使用HBT E類功率放大器之發射機整合量測結果 61
第五章 結論 66
參考文獻 67
參考文獻 References
[1] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Artech House, Boston USA, 1999.
[2] P. B. Kenington, High-Linearity RF Amplifier Design, Artech House, Boston USA, 2000.
[3] B. Shi and L. Sundstrom, “Linearization of RF power amplifiers using power feedback,” in IEEE 49th Vehicular Technology Conf., 1999, pp. 1520-1524.
[4] M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Veh. Technol., vol. 47, pp. 209-215, Feb. 1998.
[5] P. B. Kenington and D. W. Bennett, “Linear distortion correction using a feedforward system,” IEEE Trans. Veh. Technol., vol. 45, pp. 74-81, Feb. 1996.
[6] A. H. Coskun and S. Demir, “A mathematical characterization and analysis of a feedforward circuit for CDMA applications,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 767-777, March 2003.
[7] Y. Y. Woo, Y. Yang, J. Yi, J. Nam, J. Cha and B. Kim, “An adaptive feedforward amplifier for WCDMA base stations using imperfect signal cancellation,” Microwave J., vol. 46, pp. 22-44, April 2003.
[8] C. W. Park, F. Beauregard, G. Carangelo and F. M. Ghannouchi, “An independently controllable AM/AM and AM/PM predistortion linearizer for cdma2000 multicarrier applications,” in Proc. IEEE Radio Wireless Conf., 2001, pp. 53-56.
[9] J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements,” IEEE Trans. Veh. Technol., vol. 39, pp. 374-382, Nov. 1990.
[10] M. Faulkner and M. Johansson, “Adaptive linearization using predistortion-experimental results,” IEEE Trans. Veh. Technol., vol. 43, pp. 323-332, May 1994.
[11] L. Sundstrom, M. Faulkner and M. Johansson, “Quantization analysis and design of a digital predistortion linearizer for RF power amplifiers,” IEEE Trans. Veh. Technol., vol. 45, pp. 707-719, Nov. 1996.
[12] J. K. Cavers, “Optimum table spacing in predistorting amplifier linearizers,” IEEE Trans. Veh. Technol., vol. 45, pp. 1699-1705, Sept. 1999.
[13] K. J. Muhonen, M. Kavehard and R. Krishnamoorthy, “Look-up table techniques for adaptive digital predistortion: a development and comparison,” IEEE Trans. Veh. Technol., vol. 49, pp. 1995-2002, Sept. 2000.
[14] S. Kusunoki, K. Yanamoto and T. Iida, “Power-amplifier module with digital adaptive predistortion for cellular phones,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2979-2986, Dec. 2002.
[15] G. Hanington, P. F. Chen, P. M. Asbeck and L. E. Larson, “High-efficiency power amplifier using dynamic power-supply voltage for CDMA applications,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1471-1476, Aug. 1999.
[16] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson and P. M. Asbeck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1244-1255, April 2005.
[17] D. C. Cox, “Linear amplification with nonlinear components,” IEEE Trans. Commun., vol. 22, pp. 1942-1945, Dec. 1974.
[18] F. J. Casadevall and A. Valdorinos, “Performance analysis of QAM modulations applied to the LINC transmitter,” IEEE Trans. Veh. Technol., vol. 42, pp. 399-406, Nov. 1993.
[19] J. Staudiger, “An overview of efficiency enhancements with application to linear handset power amplifiers,” in IEEE MTT-S Radio Frequency Integrated Circuits Symp. Dig., 2002, pp. 45-48.
[20] B. Sahu and G. A. Ricon-Mora, “A high-efficiency linear RF power amplifier with power-tracking dynamically adaptive buck-boost supply,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 112-120, Jan. 2004.
[21] L. R. Kahn, “Single sideband transmission by envelope elimination and restoration,” in Proc. IRE, 1952, pp .803-806.
[22] F. H. Raab, “Intermodulation distortion in Kahn-technique transmitters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2273-2278, Dec. 1996.
[23] F. Wang, D. Kimball, J. Popp, A. Yang, D. Y. C. Lie, P. Asbeck and L. Larson, “Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 645-648.
[24] J. K. Jau, F. Y. Han, M. C. Du and T. S. Horng, "Polar modulation-based RF power amplifiers with enhanced envelope processing technique," in Proc. European Microwave Conf., 2004 pp. 1317-1320.
[25] K. C. Peng, J. K. Jau and T. S. Horng, "A novel EER transmitter using two-point delta-sigma modulation scheme for WLAN and 3G applications," in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 1651-1654.
[26] M. R. Elliott, T. Montalvo, B. P Jeffries, F. Murden, J. Strange, A. Hill, S. Nandipaku and J. Harrebek, “A polar modulator transmitter for GSM/EDGE,” IEEE J. Solid-State Circuits, vol. 39, pp. 2190-2199, Dec. 2004.
[27] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu and I. Gheorghe, “Quad-band GSM/GPRS/EDGE polar loop transmitter,” IEEE J. Solid-State Circuits, vol. 39, pp. 2179-2189, Dec. 2004.
[28] E. McCune, “Advanced architectures for high-efficiency multi-mode, multi-band terminal power amplifiers,” in Proc. IEEE Radio Wireless Conf., 2004, pp. 167-170.
[29] 陳俞安,採用波包調制高效率功率放大器之新型線性發射機,國立中山大學電機工程研究所碩士論文,2005。
[30] J. K. Jau, Y. A. Chen, T. S. Horng and J. Y. Li “Envelope following-based RF transmitter using switching-mode power amplifiers,” IEEE Microwave and Wireless Components Lett. Aug. 2006, to appear.
[31] J. K. Jau, Y. A. Chen, S. C. Hsiao, T. S. Horng and J. Y. Li, “Highly efficient multimode RF transmitter using the hybrid quadrature polar modulation scheme,” in IEEE MTT-S Int. Microwave Symp. Dig., 2006, to appear.
[32] T. Nesimoglu, K. A. Morris, S. C. Parker and J. P. McGeehan, “Improved EER transmitters for WLAN,” in IEEE Radio and Wireless Symp. Dig., 2006. pp. 239-242.
[33] S. R. Norsworthy, R. Schreier and G. C. Temes, Delta-Sigma Data Converters, Piscataway, NJ: IEEE Press, 1997.
[34] F. H. Raab and D. J. Rupp, “Class-S high efficiency amplitude modulator,” RF Design, vol. 17, pp. 70-74, May 1994.
[35] 杜孟哲,採用極座標調制之射頻發射機,國立中山大學電機工程研究所碩士論文,2004。
[36] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, June 1975.
[37] F. H. Raab and N. O. Sokal, “Transistor power losses in the class E tuned power amplifier,” IEEE J. Solid-State Circuits, vol. 13, pp. 912-914, Dec. 1978.
[38] J. K. Jau, Y. A. Chen, T. S. Horng and T. L. Wu, “Optimum analytical design solution to integrated Class-E amplifiers,” in Proc. IASTED Wireless Networks and Emerging Technologies Conf., 2005, pp. 40-44.
[39] J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook, Artech House, 1998.
[40] H. Dawid and H. Meyr, “The differential CORDIC algorithm:constant scale factor redundant implementation without correcting iterations,” IEEE Trans. Computers, vol. 45, pp. 307-318, March 1996.
[41] AD9761 Dual 10-bits TxDAC with 2x Interpolation Filters Data Sheet, Analog Devices Inc., Norwood, MA, 2003.
[42] AD8042 Dual 160 MHz Rail-to-Rail Amplifier Data Sheet, Analog Devices Inc., Norwood, MA, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.168.172
論文開放下載的時間是 校外不公開

Your IP address is 3.143.168.172
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code