Responsive image
博碩士論文 etd-0717106-190850 詳細資訊
Title page for etd-0717106-190850
論文名稱
Title
無線感測網路直線穿越覆蓋問題之研究
Straight-line Coverage in Wireless Sensor Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-21
繳交日期
Date of Submission
2006-07-17
關鍵字
Keywords
最佳覆蓋、最佳、覆蓋、感測網路、最差覆蓋
Sensor networks, Worst-case coverage, Coverage, Best-case coverage, Optimal
統計
Statistics
本論文已被瀏覽 5874 次,被下載 10
The thesis/dissertation has been browsed 5874 times, has been downloaded 10 times.
中文摘要
無線感測網路提供我們改善環境的多種方法,如環境監控、危險情況下之監視以及其他客製化之應用,特別是在軍事應用上。另外覆蓋問題亦在無線感測網路中佔有一重要地位。好的覆蓋即為提供感測區域服務品質之重要指標。

在本研究中我們會探討穿越覆蓋之問題,且會找出在最佳與最差情況下之直線穿越路徑的選取方法。我們提出之演算法為基於計算機圖形理論下所推倒出來之方法且具有平方的時間複雜度。此外,在該篇研究中亦提出距離函數及區塊掃瞄概念。所提出方法之正確性在本研究中亦有透過模擬加以驗證。
Abstract
Wireless sensor networks provide an alternative way of improving our environments, such as environment surveillance, hazard monitoring, and other customized environment application, especially in military applications. Furthermore, the coverage issue in wireless sensor networks also plays an important role. Good coverage of a sensor network is an essential issue to ensure the quality of service.

This paper studies the barrier coverage problems of a sensor networks, and will find the optimized straight-line path for both best-case and worst-case coverage problems. The optimal algorithm we proposed has a quadratic time complexity and is based on computational geometry. We proposed the distance function theory and applied it in our problems and we used the sweep and divide concept to solve the problems. Furthermore, the correctness of the proposed method is validated and simulated by experiments.
目次 Table of Contents
Chapter 1 Introduction……………………………………….1

1.1 Background…………………………………………………………………..1
1.2 Motivation……………………………………………………………………6

Chapter 2 Related work………………………………………8

2.1 Coverage……………………………………………………………………...8
2.1.1 Introduction…………………………………………………………...8
2.1.2 Area coverage………………………………………………………..11
2.1.3 Point coverage……………………………………………………….11
2.1.4 Barrier coverage……………………………………………………..12
2.1.5 Other related works………………………………………………….13
2.2 Computational geometric…………………………………………………...15
2.2.1 Voronoi diagram and Delaunay Triangulation ……………………...15

Chapter 3 Preliminaries……………………………………..20

3.1 Problems assumption………………………………………………………..20
3.2 Notations definition…………………………………….…………………...21
3.3 Problems formulation……….………………………………………………23

Chapter 4 The proposed solution…………………………...24

4.1 Stochastic coverage........................................................................................24
4.2 Worst Straight-line Coverage and the Maximal Breach Path…………24
4.3 Best Straight-line Coverage and the Best Support Path…………….....26
4.3.1 Distance function of a path………………………………………26
4.3.2 The applications of distance function in computational
geometric theory……………………………………………….......27
4.3.3 The proposed algorithm of Best support path………………..…30
4.3.4 Time complexity…………………………………………………..41

Chapter 5 Experimental results…………………………….42

5.1 Experimentation platform………………….………………………………..42
5.2 Experimental results……………………….………………………………..42
5.2.1 Grid Brute Force Method……………………………………………42
5.2.2 Heuristic Method…………………………………………………….42
5.2.3 Verification…………………………………………………………..43
5.2.3.1 Verification of distance function……………………………..43
5.2.3.2 Verification of SDM………………………………………….45
5.2.4 Experimental results………………………………………….……...46

Chapter 6 Conclusion………………………………………..49
Reference……………………………………………………..50
Appendix……………………………………………………...53
參考文獻 References
[1] M. Weiser. The computer for the twenty-first century. Scientific American, pages 94-100, September 1991.
[2] National Research Council. Embedded, Everywhere: A Research Agenda for Networked Systems of Embedded Computers. National Academy Press, 2001.
[3] D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical world with pervasive networks. IEEE Pervasive Computing, pages 59-69, January 2002.
[4] Feng Zhao, Leonidas Guibas, “Wireless Sensor Networks – An introduction processing approach, First edition” Elsevier Science(USA), page 13 figure 1.5.
[5] S. Megerian, F. Koushanfar, M. Potkonjak and M.B. Srivastava, "Worst and best-case coverage in sensor networks," Mobile Computing, IEEE Transactions on, vol. 4, pp. 84-92, 2005.
[6] S. Adlakha and M. Srivastava, "Critical density thresholds for coverage in wireless sensor networks," pp. 1615-1620 vol.3.
[7] S. Meguerdichian, F. Koushanfar, M. Potkonjak and M.B. Srivastava, "Coverage problems in wireless ad-hoc sensor networks," IEEE Infocom 2001, Vol3, pp. 1380-1387, April 2001.
[8] S. Slijepcevic and M. Potkonjak, “Power Efficient Organization of Wireless Sensor Netowrks,” Proc. of IEEE International Conference on Communications, Vol 2, pp 472-476, Helsinki, Finland, June 2001.
[9] M. Cardie, D. MacCallum, X. Cheng, M. Min, X. Jia, D. Li, and D.-Z. Du, “Wireless Sensor Networks with Energy Efficient Organization,” Journal of Interconnection Networks, Vol 3, No 3-4, pp 213-229, Dec 2002.
[10] D. Tian and N. D. Georganas, “A Coverage-Preserving Node Scheduling Scheme for Large Wireless Sensor Networks,” Proc. of the 1st ACM Workshop on Wireless Sensor Networks and Applications, 2002.
[11] F. Ye, G. Zhong, S. Lu, and L. Zhang, “Energy Efficient Robust Sensing Coverage in Large Sensor Networks,” Techbical Report UCLA, 2002
[12] H. Zhang and J. C. Hou, “Maintaining Sensing Coverage and Connectivity in Large Sensor Networks,” Technicall Report UIUC, UIUCDCS-R-2003-2351, June 2003.
[13] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and C. D. Gill, “Integrated Coverage and Connectivity Configuration in Wireless Sensor networks,” accepted to the First ACM Conference on Embedded Networked Sensor Systems (SensSys” 03), Nov 2003.
[14] J. Wu and H. Li, “On Calculating Connected Dominating Set for Efficient Routing in Ad Hoc Wireless Networks,” Proc. of the 3rd International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (in conjunction with MobiCom 1999), pp 7-14, Aug 1999.
[15] K. Kar and S. Banerjee, “Node Placement for Connected Coverage in Sensor Networks,” Proc. of WiOpt 2003: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, March 2003.
[16] M. Cardei and D.-Z. Du, “Improving Wireless Sensor Network Lifetime through Power Aware Organization,” accepted to appear in ACM Wireless Networks.
[17] X.-Y. Li, P.-J. Wan, O. Frieder “Coverage in Wireless Ad-Hoc Sensor Networks,” Proc. IEEE Trans. Computers, vol.52, no. 6, JUNE 2003.
[18] B. Liu and D. Towsley, “On the Coverage and Detectability ofWireless Sensor Networks,” Proc. of WiOpt” 03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, 2003.
[19] S. Meguerdichian, F. Koushanfar, G Qu, and M. Potkonjak “Exposure in Wireless Ad-Hoc Sensor Networks,” Proc. of 7th Annual International Conference on Mobile Computing and Networking (MobiCom’01), pp. 139-150, July 2001.
[20] S. Adlakha and M. Srivastava, "Critical density thresholds for coverage in wireless sensor networks," IEEE Wireless Communication and Networking, Vol 3, pp. 1615-1620 March 2003.
[21] H. Huang and A.W. Richa, “Dynamic Coverage in Ad-Hoc Sensor Networks,” Mobile Networks and Applications 10, 9-17, 2005.
[22] J. O “Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, Oxford, 1987.
[23] M. Marengoni, B. A. Draper, A. Hanson, and R. Sitaraman, “A System to Place Observers on a Polyhedral Terrain in Polynomial Time,” Image and Vision Computing, Vol 18, pp 773-780, 2000.
[24] D. W. Gage, “Command Control for Many-Bobot Systems,” proc. of the Nineteenth Annual AUVS Technical Symposium, AUVS-92, pp 22-24, Hunstville Alabama, USA, June 1992.
[25] S. Fortune, “Voronoi Diagrams and Delaunay Triangulations,” Computing in Euclidean Geometry, F.K. Hwang and D.-Z. Du, eds., pp. 193-233, Singapore: World Scientific, 1992.
[26] J. O’Rourke, Combinatorial Geometry in C. Cambridge, 1998.
[27] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction. Springer-Verlag, 1985.
[28] F. Aurenhammer, “Voronoi Diagrams – A Survey of a Fundamental Geometric Data Structure, ” ACM Computing Surveys23, pp. 145-405, 1991.
[29] K. Mulmuley, Computational Geometry: An Introduction through Randomized Algorithm. Prentice-Hall, 1994.
[30] D.P. Dobkin, S.J. Friedman, and K.J. Supowit, “Delaunay Graphs are almost as good as complete graphs,” Discrete Computational Geometry, 5:399-407, 1990.
[31] J.W. Jaromczyk and G.T. Toussaint, “Relative Neighborhood Graphs and Their Relatives,” Proc. IEEE, vol. 80, no. 9, pp. 1502-1517, 1992.
[32] K.R. Gabriel and R.R. Sokal, “A New Statistical Approach to Geographic Variation Analysis,” Systematic Zoology, vol. 18, pp. 259-278, 1969.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 35.174.62.162
論文開放下載的時間是 校外不公開

Your IP address is 35.174.62.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code