Responsive image
博碩士論文 etd-0718111-230513 詳細資訊
Title page for etd-0718111-230513
論文名稱
Title
利用注入鎖定振盪器之CMOS感測電路
A CMOS Sensing Circuit Using Injection-Locked Oscillators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-27
繳交日期
Date of Submission
2011-07-18
關鍵字
Keywords
振盪器、注入鎖定、積體化、生理感測、頻譜感測
Spectrum sensor, Integrated, Injection-locked, Oscillators, Vital sign sensor
統計
Statistics
本論文已被瀏覽 5703 次,被下載 0
The thesis/dissertation has been browsed 5703 times, has been downloaded 0 times.
中文摘要
本論文利用注入鎖定振盪器,實現頻譜感測器及生理訊號感測器架構。首先由Adler’s equation了解影響鎖定範圍的因素後,將針對放大輸入功率這項條件來增加鎖定範圍。以ADS進行注入鎖定振盪器電路設計的模擬,其量測結果當-17.5 dBm功率注入時,注入鎖定範圍為70 MHz。然後以注入鎖定振盪器實現FM解調器,此晶片所能解調的FSK訊號最低的頻率偏移量及注入功率可達到350 KHz及-39.5 dBm,最高調制速度可達到40 Mbps。接著利用上述設計的晶片進行頻譜感測及生理感測的實驗。首先介紹此架構於頻譜感測及生理感測的理論分析,接著由晶片進行實作,頻譜感測可達到掃瞄速率100 MHz/0.5 ms及最小偵測功率可達到-100 dBm的表現;生理感測在人體距離天線80公分處仍可看到心跳及呼吸活動情形。
Abstract
This thesis uses injection-locked oscillators to realize spectrum and vital sign sensor. At first, the thesis discusses the factors to affect the locking range based on Adler’s equation, and adopts an increase of injection power to enlarge the locking range. Then, the circuit simulation using ADS is carried out to predict the output response of an injection-locked oscillator. As an implementation result, a CMOS chip of an injection-locked oscillator achieves 70 MHz locking range at -17.5 dBm injection power. In addition, a CMOS FM demodulator is realized with the injection-locked oscillator, showing that the chip can demodulate the FSK signal with a minimum frequency deviation of 350 KHz, a minimum input power of -39.5 dBm, and a maximum data rate of 40 Mbps. With the help of the above CMOS chips, a spectrum sensor and a vital sign sensor are realized. In the test, the spectrum sensor can measure a minimum signal power of -100 dBm at a scan speed of 100 MHz/0.5 ms, while the vital sign sensor can detect the breathing and heartbeat rate at a sensing distance of 80 cm.
目次 Table of Contents
第一章 緒論 1
1.1 頻譜感測器架構探討 1
1.2 生理感測器探討 3
1.3 應用注入鎖定壓控振盪器於解調器架構 4
1.4 論文章節規劃 7
第二章 應用於感測器之寬頻注入鎖定振盪器 8
2.1 注入鎖定理論 8
2.2 注入鎖定振盪器晶片設計 10
2.2.1 注入鎖定振盪器電路簡介 10
2.2.2 注入鎖定振盪器設計 14
2.3 解調器晶片設計 20
2.3.1 注入鎖定應用於FM解調器 20
2.3.2 FM解調器設計 23
第三章 頻譜與生理感測器 39
3.1 注入鎖定應用於頻譜感測器之原理介紹 39
3.1.1 注入牽引現象 39
3.1.2 頻譜掃瞄行為分析 42
3.2 頻譜感測器實驗 46
3.2.1 頻譜感測器混成電路實驗 46
3.2.2頻譜感測器晶片電路實驗 52
3.3 注入鎖定應用於生理感測器之原理介紹 55
3.3.1 自我注入鎖定理論分析 56
3.3.2 FM解調器等效延遲時間分析 61
3.4 生理感測實驗 64
第四章 結論 67
參考文獻 69
參考文獻 References
[1] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey,” Elsevier Journal on Computer Networks, pp. 2127–2159, May 2006.
[2] FCC. Et docket no. 03-322. Notice of Proposed Rule Making and Order, Dec. 2003.
[3] J. G. Proakis, Digital Communications, 4th ed. New York: McGRAW-Hill, 2001
[4] G. Genesan and Y. G. Li, “Cooperative spectrum sensing in cognitive radio networks,” in Proc. 2005 IEEE Int. Symp., Dynamic Spectrum Access Networks, pp. 137–143.
[5] W. A. Gardner, “Spectral correlation of modulated signals: part I-analog modulation,” IEEE Trans. on Communications, vol. 35, no. 6, pp. 584–594, June 1987.
[6] Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sensing for cognitive radio,” in Proc. IEEE 1st Int. Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2006, pp. 1–5.
[7] F. Rivet, Y. Deval Jean-Baptiste Begueret, D. Dallet, P. Cathelin, and D. Belot, “The experimental demonstration of a SASP-Based full software radio receiver,” IEEE J. Solid-State Circuit, vol. 45, no. 5, pp. 979–988, May 2010.
[8] J. Park, T. Song, J. Hur, S. M. Lee, J. Choi, K. Kim, K. Lim, Chang-Ho Lee, H. Kim, and J. Laskar, “A fully integrated UHF-Band CMOS receiver with multi-resolution spectrum sensing (MRSS) functionality for IEEE 802.22 cognitive radio applications,” IEEE J. Solid-State circuit, vol. 44, no. 1, pp. 258–267, Jan. 2009.
[9] A. D. Droit, O. Boric-Lubecke, V. M. Libecke, J. Lin, and G. T. A. Kovacs , “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 838–848, March 2004.
[10] Byung-Kwon Park, Olga Boric-Lubecke, and Victor M. Lubecke, “Arctangent demodulation with dc offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1073–1079, May 2007.
[11] C. Li, and Jenshan Lin, “Random bodi movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12, pp. 3143–3152, Dec. 2008.
[12] J. M. Lopez-Villegas, and Javier Sieiro Cordoba, “BPSK to ASK signal conversion using injection-locked oscillators–Part I: theory,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 226–234, Jan. 2006.
[13] J. M. Lopez-Villegas, Jose Gabriel Macias-Montero, Joan Aitor Osorio, Jose Cabanillas, Neus Vidal, and Josep Samitier, “BPSK to ASK signal conversion using injection-locked oscillators–Part II: experiment,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 226–234, Jan. 2006.
[14] Qiang Zhu, and Yang Xu, “A 228 μW 750 MHz BPSK demodulator based on injection locking,” IEEE J. Solid-State Circuit, vol. 46, no. 2, pp. 416–423, January 2011.
[15] Han Yan, Jose Gabriel Macias-Montero, Atef Akhnoukh, Leo C. N. de Vreede, John R. Long, and Joachim N. Burghartz, “An ultra-low power BPSK receiver and demodulator based on injection-locked oscillators,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1339–1349, May 2011.
[16] C. S. Wang, K. D. Chu, and C. K. Wang, “A 0.13 μm CMOS 2.5Gb/s FSK demodulator using injection-locked technique,” in Proc. IEEE RFIC Symp. Dig., 2009, pp. 563–566.
[17] H. R. Rategh, and T. H. Lee, “Superharmonic injection-locked frequency divider,” IEEE J. Solid-State Circuit, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[18] T. N. Luo, Y. J. E. Chen, and D. Heo “A V-band wide locking range CMOS frequency divider,” in IEEE MTT-S Int. Microwave Symp. Dig., 2008, pp. 563–566.
[19] H. K. Chen, H. J. Chen, D. C. Chang, Y. Z. Juang, Y. C. Yang, and S. S. Lu, “A mm-wave CMOS multimode frequency divider,” in IEEE Int. Solid-State Circuit Conf. Tech . Dig., 2008, pp. 563–566.
[20] T. N. Luo, and Y. J. E. Chen, “A 44 GHz 0.18 μm CMOS superharmonic frequency divider,” in IEEE MTT-S Int. Microwave Symp. Dig., 2007, pp. 1409–1412.
[21] C. J. Li, F. K. Wang, T. S. Horng, and K. C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3143–1452, Dec. 2009.



[22] F. K. Wang, C. J. Li, C. H. Hsiao, T. S. Horng, J. Lin, K. C. Peng, J. K. Jau, J. Y. Li, and C. C. Chen, “An injection-locked detector for concurrent soectrum and vital sign sensing,” in IEEE MTT-S Int. Microwave Symp. Dig., 2010, pp. 768–771.
[23] F. K. Wang, C. J. Li, C. H. Hsiao, T. S. Horng, J. Lin, K. C. Peng, J. K. Jau, J. Y. Li, and C. C. Chen, “A novel vital-sign sensor based on a self-injection-locked oscillator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 4112–4120, Dec. 2010.
[24] R. Adler, “A study of locking phenomena in oscillators, ”Proc. IRE, vol. 34, no. 6, pp. 351–357, June 1946.
[25] R. C. Mackey, “Injection locking of klystron oscillators,” IRE Trans., vol. 10, no. 4, pp. 228–235, July 1962.
[26] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no. 11, pp. 1723–1727, Nov. 1965.
[27] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[28] 李銘偉,24-GHz 與60-GHz COMS 低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製,國立成功\\大學電腦與通信工程研究所碩士論文,2010.
[29] A. Amer, E. Hegazim, and H. Ragai, “Design issues in CMOS differential LC oscillators,” IEEE Tran. on Circuit Syst. II, Exp. Briefs, vol. 54, no. 1, pp. 4–8, Jan. 2007.
[30] A. Amer, E. Hegazim, and H. Ragai, “A 90-nm wideband merged CMOS LNA and mixer exploiting noise cancellation,” IEEE J. Solid-State Circuit, vol. 42, no. 2, pp. 323–328, Feb. 2007.
[31] M. E. Heidari and A. A. Abidi, “Behavioral models of frequency pulling in oscillators,” in 2007 IEEE Int. Behavioral Modeling and Simulation Workshop, pp. 100–104.
[32] F. Fantini, R. Cignani, and A. Santarelli, “HB analysis of injection locked oscillators using commercial CAD tools,” in 2007 IEEE European Microwave Conference, pp. 1177–1180.
[33] Razavi, “A study of injection locking and pullinj in oscillators,” IEEE J. Solid-State Circuit, vol. 39, no. 9, pp. 1415–1424, September 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.196.182
論文開放下載的時間是 校外不公開

Your IP address is 18.218.196.182
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code