博碩士論文 etd-0719111-163139 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 葉吉原(Chi-Yuan Yeh) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 博士(Ph.D.) 畢業時期 99學年第2學期
論文名稱(中) 使用混合式學習演算法之第二型類神經模糊系統建模技術
論文名稱(英) Type-2 Neuro-Fuzzy System Modeling with Hybrid Learning Algorithm
檔案
  • etd-0719111-163139.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外完全公開

    論文語文/頁數 英文/164
    統計 本論文已被瀏覽 5073 次,被下載 778 次
    摘要(中) 本論文提出一個新的方法,使用給定的輸入-輸出訓練資料集來建構一個第二型類神經模糊系統。資料經過此系統的模糊推論後,輸出一個第二型模糊集合,透過型態降階(type reduction)演算法及解模糊方法可得到一個明確的輸出值(crisp output)。Karnik 與 Mendel 提出一個區間第二型型態降階演算法,稱為KM演算法,KM演算法只能對區間第二型模糊集合進行降階。Liu 基於KM演算法提出一個第二型型態降階演算法,其概念是使用α-截集將第二型模糊集合分成數個區間第二型模糊集合,每一個區間第二型模糊集合又稱為α-平面,然後再使用KM演算法對每個α-平面進行型態降階。由於KM演算法的切換點初始值並不夠好,導致Liu所提方法的計算量比較大。本論文提出一個強化式型態降階演算法來改善此問題。我們利用上一個α-平面的型態降階結果,當成這次α-平面型態降階的初始值,大幅地窄化KM演算法的解空間,進而加速型態降階的速度。實驗模擬的結果顯示,本論文所提出的方法可以在不影響準確度的情況下減少型態降階所需要的時間。
    建構一個第二型類神經模糊系統包含兩個階段:架構鑑別(structure identification)與參數鑑別(parameter identification)。在架構鑑別階段,一個自建構式模糊分群演算法被用來將輸入-輸出訓練資料分成數個模糊群聚,其概念是利用在輸入及輸出空間上的相似度測試來產生模糊群聚,而每個模糊群聚的歸屬函數則是根據其所包含的資料之平均值及標準差來定義。之後,結合奇異值分解最小平方估計法,每一個模糊群聚可以被萃取出一條第二型TSK型式的模糊“若-則”法則,以組成一個初步的第二型模糊法則庫,此法則庫可以直接使用於第二型模糊推論,也可以根據這些模糊法則來建立一個第二型TSK型式的模糊類神經網路。在參數鑑別階段,我們發展一個混合式學習演算法來對模糊類神經網路進行學習,以調整這些模糊法則。此演算法結合了粒子群優法(particle swarm optimization, PSO)及奇異值分解最小平方估計法,分別用來調整前鑑部參數及後鑑部參數。實驗結果顯示,經由混合式學習演算法修正過的第二型模糊法則可以增加預測精確度,而且本論文所提第二型類神經模糊系統優於區間第二型類神經模糊系統及第一型類神經模糊系統。除此之外,我們應用第二型類神經模糊系統進行台灣股市預測,實驗結果也顯示我們的預測系統優於其他方法。
    摘要(英) We propose a novel approach for building a type-2 neuro-fuzzy system from a given set of input-output training data. For an input pattern, a corresponding crisp output of the system is obtained by combining the inferred results of all the rules into a type-2 fuzzy set which is then defuzzified by applying a type reduction algorithm. Karnik and Mendel proposed an algorithm, called KM algorithm, to compute the centroid of an interval type-2 fuzzy set efficiently. Based on this algorithm, Liu developed a centroid type-reduction strategy to do type reduction for type-2 fuzzy sets. A type-2 fuzzy set is decomposed into a collection of interval type-2 fuzzy sets by α-cuts. Then the KM algorithm is called for each interval type-2 fuzzy set iteratively. However, the initialization of the switch point in each application of the KM algorithm is not a good one. In this thesis, we present an improvement to Liu's algorithm. We employ the result previously obtained to construct the starting values in the current application of the KM algorithm. Convergence in each iteration except the first one can then speed up and type reduction for type-2 fuzzy sets can be done faster. The efficiency of the improved algorithm is analyzed mathematically and demonstrated by experimental results.
    Constructing a type-2 neuro-fuzzy system involves two major phases, structure identification and parameter identification. We propose a method which incorporates self-constructing fuzzy clustering algorithm and a SVD-based least squares estimator for structure identification of type-2 neuro-fuzzy modeling. The self-constructing fuzzy clustering method is used to partition the training data set into clusters through input-similarity and output-similarity tests. The membership function associated with each cluster is defined with the mean and deviation of the data points included in the cluster. Then applying SVD-based least squares estimator, a type-2 fuzzy TSK IF-THEN rule is derived from each cluster to form a fuzzy rule base. After that a fuzzy neural network is constructed. In the parameter identification phase, the parameters associated with the rules are then refined through learning. We propose a hybrid learning algorithm which incorporates particle swarm optimization and a SVD-based least squares estimator to refine the antecedent parameters and the consequent parameters, respectively. We demonstrate the effectiveness of our proposed approach in constructing type-2 neuro-fuzzy systems by showing the results for two nonlinear functions and two real-world benchmark datasets. Besides, we use the proposed approach to construct a type-2 neuro-fuzzy system to forecast the daily Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). Experimental results show that our forecasting system performs better than other methods.
    關鍵字(中)
  • 奇異值分解最小平方估計法
  • 模糊分群演算法
  • 型態降階
  • KM演算法
  • 粒子群優法
  • 第二型類神經模糊系統
  • 第二型模糊集合
  • 關鍵字(英)
  • SVD-based least-squares estimator
  • particle swarm optimization
  • fuzzy clustering
  • type reduction
  • Type-2 fuzzy set
  • type-2 neuro-fuzzy system
  • Karnik-Mendel algorithm
  • 論文目次 論文審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
    致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
    Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
    List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
    List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.1 Motivation and purposes . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.2 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . 3
    1.3 Type-1 fuzzy logic systems . . . . . . . . . . . . . . . . . . . . . . . . 5
    1.4 Interval type-2 fuzzy logic systems . . . . . . . . . . . . . . . . . . . 7
    1.5 Basic type-2 fuzzy concepts . . . . . . . . . . . . . . . . . . . . . . . 11
    1.6 SVD-based least squares estimator . . . . . . . . . . . . . . . . . . . 18
    1.7 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
    1.8 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 25
    2 Type Reduction for Type-2 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . 27
    2.1 Karnik-Mendel algorithm . . . . . . . . . . . . . . . . . . . . . . . . 28
    2.2 Liu’s type reduction algorithm . . . . . . . . . . . . . . . . . . . . . . 30
    2.3 Improved type reduction algorithm . . . . . . . . . . . . . . . . . . . 31
    2.3.1 Improved algorithm . . . . . . . . . . . . . . . . . . . . . . . 31
    2.3.2 Some observations . . . . . . . . . . . . . . . . . . . . . . . . 33
    2.3.3 Complexity comparison . . . . . . . . . . . . . . . . . . . . . 35
    2.3.4 An example for improved type reduction . . . . . . . . . . . . 36
    3 Type-2 Neuro-Fuzzy Systems . . . . . . . . . . . . . . . . . . . . . . . . . 45
    3.1 The architecture of type-2 TSK-based neuro-fuzzy system . . . . . . 46
    3.1.1 An example for type-2 TSK-based neuro-fuzzy system . . . . 50
    3.2 Structure identification . . . . . . . . . . . . . . . . . . . . . . . . . . 52
    3.2.1 Self-constructing fuzzy clustering algorithm . . . . . . . . . . 53
    3.2.2 Type-2 TSK-based fuzzy rules extraction . . . . . . . . . . . . 56
    3.2.3 An example for structure identification . . . . . . . . . . . . . 58
    3.3 Parameter identification . . . . . . . . . . . . . . . . . . . . . . . . . 61
    3.3.1 Refining antecedent parameters . . . . . . . . . . . . . . . . . 62
    3.3.2 Refining consequent parameters . . . . . . . . . . . . . . . . . 64
    3.3.3 An example for parameter identification . . . . . . . . . . . . 66
    4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
    4.1 Experimental results for type reduction . . . . . . . . . . . . . . . . . 71
    4.1.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
    4.1.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
    4.2 Experimental results for neuro-fuzzy systems . . . . . . . . . . . . . . 87
    4.2.1 Experiment III . . . . . . . . . . . . . . . . . . . . . . . . . . 87
    4.2.2 Experiment IV . . . . . . . . . . . . . . . . . . . . . . . . . . 93
    4.2.3 Experiment V . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
    4.3 Application for TAIEX forecasting . . . . . . . . . . . . . . . . . . . 104
    4.3.1 Experiment VI . . . . . . . . . . . . . . . . . . . . . . . . . . 105
    4.3.2 Experiment VII . . . . . . . . . . . . . . . . . . . . . . . . . . 106
    4.3.3 Experiment VIII . . . . . . . . . . . . . . . . . . . . . . . . . 110
    4.3.4 Experiment IX . . . . . . . . . . . . . . . . . . . . . . . . . . 115
    5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 119
    5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
    5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
    Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
    Appendix A Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
    參考文獻 [1] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, June 1965.
    [2] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1481–1497, September 1990.
    [3] J.-S. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–685, June 1993.
    [4] J.-S. R. Jang and C.-T. Sun, “Neuro-fuzzy modeling and control,” Proceedings of the IEEE, vol. 83, no. 3, pp. 378–406, March 1995.
    [5] S.-J. Lee and C.-S. Ouyang, “A neuro-fuzzy system modeling with self-constructing rule generation and hybrid SVD-based learning,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 341–353, June 2003.
    [6] C.-S. Ouyang, W.-J. Lee, and S.-J. Lee, “A TSK-type neuro-fuzzy network approach to system modeling problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 35, no. 4, pp. 751–767, August 2005.
    [7] G. J. Klir and B. Yuan, Fuzzy Set and Fuzzy Logic. Prentice Hall PTR, May 1995.
    [8] L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning−I,” Information Sciences, vol. 8, pp. 199–249, January 1975.
    [9] N. N. Karnik, J. M. Mendel, and Q. Liang, “Type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 6, pp. 643–658, December 1999.
    [10] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5, pp. 535–550, October 2000.
    [11] J. M. Mendel, UNCERTAIN Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Upper Saddle River, NJ, USA: Prentice Hall PTR, January 2001.
    [12] N. N. Karnik and J. M. Mendel, “Operations on type-2 fuzzy sets,” Fuzzy Sets and Systems, vol. 122, no. 2, pp. 327–348, September 2001.
    [13] J. M. Mendel and R. I. John, “Type-2 fuzzy sets made simple,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 117–127, April 2002.
    [14] J. M. Mendel, “Computing derivatives in interval type-2 fuzzy logic system,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 1, pp. 84–98, February 2004.
    [15] J. M. Mendel, “Type-2 fuzzy sets and systems: An overview,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 20–29, February 2007.
    [16] J. M. Mendel, “Advances in type-2 fuzzy sets and systems,” Information Sciences, vol. 177, no. 1, pp. 84–110, January 2007.
    [17] J. M. Mendel, F. Liu, and D. Zhai, “α-plane representation for type-2 fuzzy sets: Theory and applications,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1189–1207, October 2009.
    [18] Q. Liang and J. M. Mendel, “Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5, pp. 551–563, October 2000.
    [19] R. Sepulveda, O. Castillo, P. Melin, and O. Montiel, “An efficient computational method to implement type-2 fuzzy logic in control applications,” Analysis and Design of Intelligent Systems using Soft Computing Techniques, vol. 41, pp. 45–52, June 2007.
    [20] R. I. John, P. R. Innocent, and M. R. Barnes, “Neuro-fuzzy clustering of radiographic tibia image data using type-2 fuzzy sets,” Information Sciences, vol. 125, no. 1-4, pp. 65–82, June 2000.
    [21] Q. Liang and J. M. Mendel, “Designing interval type-2 fuzzy logic systems using
    an SVD-QR method: Rule reduction,” International Journal of Intelligent Systems, vol. 15, no. 10, pp. 939–957, October 2000.
    [22] Q. Liang and J. M. Mendel, “MPEG VBR video traffic modeling and classification using fuzzy techniques,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 1, pp. 183–193, February 2001.
    [23] H. A. Hagras, “A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 524–539, August 2004.
    [24] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,” Information Sciences, vol. 170, no. 2-4, pp. 409–418, February 2005.
    [25] L. D. Lascio, A. Gisolfi, and A. Nappi, “Medical differential diagnosis through type-2 fuzzy sets,” in Proceedings of the IEEE international conference on Fuzzy Systems, May 2005, pp. 371–376.
    [26] O. Castillo and P. Melin, “Comparison of hybrid intelligent systems, neural networks, and interval type-2 fuzzy logic for time series prediction,” in Proceedings
    of the International Joint Conference on Neural Networks, August 2007, pp. 3086–3091.
    [27] Z. Liu, Y. Zhang, and Y. Wang, “A type-2 fuzzy switching control system for biped robots,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 37, no. 6, pp. 1202–1213, November 2007.
    [28] N. R. Cazarez-Castroa, L. T. Aguilar, and O. Castillo, “Hybrid genetic-fuzzy optimization of a type-2 fuzzy logic controller,” in Proceedings of the 2008 8th International Conference on Hybrid Intelligent Systems, September 2008, pp. 216–221.
    [29] H. K. Lam and L. D. Seneviratne, “Stability analysis of interval type-2 fuzzy model-based control systems,” IEEE Transactions on Systems, Man, and Cybernetics,
    Part B: Cybernetics, vol. 38, no. 3, pp. 617–628, June 2008.
    [30] J. Zeng and Z.-Q. Liu, “Type-2 fuzzy markov random fields and their application to handwritten chinese character recognition,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 3, pp. 747–760, June 2008.
    [31] L. A. Lucas, T. M. Centeno, and M. R. Delgado, “Land cover classification based on general type-2 fuzzy classifiers,” International Journal of Fuzzy Systems, vol. 10, no. 3, pp. 207–216, September 2008.
    [32] F.-J. Lin and P.-H. Chou, “Adaptive control of two-axis motion control system using interval type-2 fuzzy neural network,” IEEE Transactions on Industrial Electronics, vol. 56, no. 1, pp. 178–193, January 2009.
    [33] M. H. F. Zarandi, B. Rezaee, I. B. Turksen, and E. Neshat, “A type-2 fuzzy rule-based expert system model for stock price analysis,” Expert Systems with Applications, vol. 36, no. 1, pp. 139–154, January 2009.
    [34] F.-J. Lin, P.-H. Chou, P.-H. Shieh, and S.-Y. Chen, “Robust control of an LUSM-based X-Y-θ motion control stage using an adaptive interval type-2 fuzzy neural network,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 1, pp. 24–38, February 2009.
    [35] C.-F. Juang and C.-H. Hsu, “Reinforcement interval type-2 fuzzy controller design by online rule generation and Q-value-aided ant colony optimization,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 6, pp. 1528–1542, December 2009.
    [36] R. Martineza, O. Castilloa, and L. T. Aguilar, “Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms,” Information Sciences, vol. 179, no. 13, pp. 2158–2174, June 2009.
    [37] D. Hidalgo, O. Castillo, and P. Melin, “Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms,” Information Sciences, vol. 179, no. 13, pp. 2123–2145, June 2009.
    [38] O. Mendoza, P. Melin, and O. Castillo, “Interval type-2 fuzzy logic and modular neural networks for face recognition applications,” Applied Soft Computing, vol. 9, no. 4, pp. 1377–1387, September 2009.
    [39] P. Melin, O. Mendoza, and O. Castillo, “An improved method for edge detection based on interval type-2 fuzzy logic,” Expert Systems with Applications, vol. 37, no. 12, pp. 8527–8535, December 2010.
    [40] N. R. Cazarez-Castroa, L. T. Aguilarb, and O. Castillo, “Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash,” Expert Systems with Applications, vol. 37, no. 6, pp. 4368–4378, June 2010.
    [41] R. Martinez-Soto, A. R. Diaz, O. Castillo, and L. T. Aguilar, “Type-2 fuzzy logic controllers optimization using genetic algoritms and particle swarm optimization,” in Proceedings of 2010 IEEE International Conference on Granular Computing, August 2010, pp. 724–727.
    [42] W. L. Tung and C. Quek, “eFSM–a novel online neural-fuzzy semantic memory model,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 136–157, January 2010.
    [43] H. Song, C. Miao, W. Roel, Z. Shen, and F. Catthoor, “Implementation of fuzzy cognitive maps based on fuzzy neural network and application in prediction of time series,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 2, pp. 233–250, April 2010.
    [44] C.-F. Juang, R.-B. Huang, and W.-Y. Cheng, “An interval type-2 fuzzy-neural network with support-vector regression for noisy regression problems,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 686–699, August 2010.
    [45] C.-S. Chen, “TSK-type self-organizing recurrent-neural-fuzzy control of linear microstepping motor drives,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2253–2265, September 2010.
    [46] S. Yilmaz and Y. Oysal, “Fuzzy wavelet neural network models for prediction and identification of dynamical systems,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1599–1609, October 2010.
    [47] H. Han and J. Qiao, “A self-organizing fuzzy neural network based on a growing-and-pruning algorithm,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 6, pp. 1129–1143, December 2010.
    [48] R. H. Abiyev and O. Kaynak, “Type-2 fuzzy neural structure for identification and control of time-varying plants,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4147–4159, December 2010.
    [49] O. Castillo and P. Melin, “A new approach for plant monitoring using type-2 fuzzy logic and fractal theory,” International Journal of General Systems, vol. 33, no. 2 & 3, pp. 305–319, April 2004.
    [50] P. Melin and O. Castillo, “An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory,” Information Sciences, vol. 177, no. 7, pp. 1543–1557, April 2007.
    [51] N. R. Cazares-Castro, L. T. Aguilar, and O. Castillo, “Designing type-2 fuzzy logic system controllers via fuzzy lyapunov synthesis for the output regulator of a servomechanism with nonlinear backlash,” in Proceedings of the IEEE international conference on Systems, Man and Cybernetics, October 2009, pp. 268–273.
    [52] J. R. Castro, O. Castillo, P. Melin, and A. Rodriguez-Diaz, “A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks,” Information Sciences, vol. 179, no. 13, pp. 2175–2193, June 2009.
    [53] Y.-T. Peng, C.-Y. Yeh, and S.-J. Lee, “A hierarchical SVD-based least squares method for parameter estimation,” in Proceedings of the International Conference on Data Engineering and Internet Technology, March 2011, pp. 219–222.
    [54] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
    [55] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, no. 1-4, pp. 195–220, February 2001.
    [56] C.-S. Ouyang and S.-L. Liu, “An approach for construction and learning of interval type-2 TSK neuro-fuzzy systems,” in Proceedings of the IEEE international conference on Fuzzy Systems, August 2009, pp. 1517–1522.
    [57] F. Liu, “An efficient centroid type-reduction strategy for general type-2 fuzzy logic system,” Information Sciences, vol. 179, no. 9, pp. 2224–2236, April 2008.
    [58] D. Wu and J. M. Mendel, “Enhanced Karnik-Mendel algorithms,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 923–934, August 2009.
    [59] S. Greenfield, F. Chiclana, S. Coupland, and R. I. John, “The collapsing method of defuzzification for discretised interval type-2 fuzzy sets,” Information Sciences, vol. 179, no. 13, pp. 2055–2069, June 2009.
    [60] S. Greenfield, F. Chiclana, and R. I. John, “Type-reduction of the discretised interval type-2 fuzzy set,” in Proceedings of the IEEE international conference on Fuzzy Systems, August 2009, pp. 738–743.
    [61] S. Coupland and R. John, “A fast geometric method for defuzzification of type-2 fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 929–941, August 2008.
    [62] S. Barnett, Matrices: Methods and Applications. New York, NY, USA: Oxford University Press, June 1990.
    [63] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: The Johns Hopkins University Press, October 1996.
    [64] L. A. Lucas, T. M. Centeno, and M. R. Delgado, “General type-2 fuzzy inference systems: Analysis, design and computational aspects,” in Proceedings of the IEEE international conference on Fuzzy Systems, July 2007, pp. 1107–1112.
    [65] W.-W. Tan and D. Wu, “Design of type-reduction strategies for type-2 fuzzy logic systems using genetic algorithms,” in Advances in Evolutionary Computing for System Design, vol. 6, 2007, pp. 169–187.
    [66] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–420, April 1970.
    [67] O. Bretscher, Linear Algebra With Applications, 3rd ed. Upper Saddle River, N.J., USA: Prentice Hall, July 2004.
    [68] A. Bjorck, Numerical Methods for Least Squares Problems, 1st ed. Philadelphia, PA , USA: SIAM: Society for Industrial and Applied Mathematics, December 1996.
    [69] S. S. Niu, L. Ljung, and A. Bjorck, “Decomposition methods for solving least-squares parameter estimation,” IEEE Transactions on Signal Processing, vol. 44, no. 1, pp. 2847–2852, November 1996.
    [70] A. Bjorck and J. Y. Yuan, “Preconditioners for least squares problems by LU factorization,” Electronic Transactions on Numerical Analysis, vol. 8, pp. 26–35, November 1999.
    [71] L. V. Foster, “Solving rank-deficient and ill-posed problems using UTV and QR factorizations,” SIAM Journal on Matrix Analysis and Applications, vol. 25, no. 2, pp. 582–600, February 2003.
    [72] C. B. Moler, Numerical Computing with Matlab. Philadelphia, PA , USA: Society for Industrial Mathematics, January 2004.
    [73] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge, UK: Cambridge University Press, October 1992.
    [74] L. Giraud, S. Gratton, and J. Langou, “A rank-k update procedure for reorthogonalizing the orthogonal factor from modified Gram-Schmidt,” SIAM Journal on Matrix Analysis and Applications, vol. 25, no. 4, pp. 1163–1177, April 2004.
    [75] Y. Lin, G. A. Cunningham, and S. V. Coggeshall, “Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp. 614–621, November 1997.
    [76] C.-C. Wong and C.-C. Chen, “A hybrid clustering and gradient descent approach for fuzzy modeling,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29, no. 6, pp. 686–693, December 1999.
    [77] R. Thawonmas and S. Abe, “Function approximation based on fuzzy rules extracted from partitioned numerical data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 29, no. 4, pp. 525–534, August 1999.
    [78] C.-H. Wang, C.-S. Cheng, and T.-T. Lee, “Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN),” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 3, pp. 1462–1477, June 2004.
    [79] H. Hagras, “Comments on dynamical optimal training for interval type-2 fuzzy neural network (T2FNN),” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 5, pp. 1206–1209, October 2006.
    [80] C.-H. Lee, T.-W. Hu, C.-T. Lee, and Y.-C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proceedings of the IEEE international conference on Fuzzy Systems, June 2008, pp. 1496–1502.
    [81] C.-F. Juang and Y.-W. Tsao, “A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 6, pp. 1411–1424, December 2008.
    [82] J. R. Castro, O. Castillo, P. Melin, A. Rodriguez-Diaz, and L. G. Martinez, “Intelligent control using an interval type-2 fuzzy neural network with a hybrid learning algorithm,” in Proceedings of the IEEE international conference on Fuzzy Systems, June 2008, pp. 893–900.
    [83] D. G. Champernowne, “Sampling theory applied to autoregressive schemes,” Journal of the Royal Statistical Society: Series B, vol. 10, pp. 204–231, 1948.
    [84] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, 3rd ed. Englewood Cliffs: Prentice Hall, February 1994.
    [85] R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation,” Econometrica, vol. 50, no. 4, pp. 987–1008, July 1982.
    [86] T. Bollerslev, “Generalized autoregressive conditional heteroscedasticity,” Journal of Econometrics, vol. 31, no. 3, pp. 307–327, 1986.
    [87] T. H.-K. Yu, “Weighted fuzzy time-series models for TAIEX forecasting,” Physica A: Statistical Mechanics and its Applications, vol. 349, no. 3-4, pp. 609–624, April 2005.
    [88] K.-H. Huarng and T. H.-K. Yu, “A type 2 fuzzy time series model for stock index forecasting,” Physica A: Statistical Mechanics and its Applications, vol. 353, pp. 445–462, August 2005.
    [89] K. Huarng and T. H.-K. Yu, “The application of neural networks to forecast fuzzy time series,” Physica A: Statistical Mechanics and its Applications, vol. 363, no. 2, pp. 481–491, May 2006.
    [90] K.-H. Huarng, T. H.-K. Yu, and Y.-W. Hsu, “A multivariate heuristic model for fuzzy time-series forecasting,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 37, no. 1, pp. 836–846, August 2007.
    [91] T. H.-K. Yu and K.-H. Huarng, “Weighted fuzzy time-series models for TAIEX forecasting,” Expert Systems with Applications, vol. 34, no. 4, pp. 2945–2952, May 2008.
    [92] S.-M. Chen and C.-D. Chen, “TAIEX forecasting based on fuzzy time series and fuzzy variation groups,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 1, pp. 1–12, February 2011.
    [93] Y. Yoon, J. George Swales, and T. M. Margavio, “A comparison of discriminant analysis versus artificial neural networks,” The Journal of the Operational Research Society, vol. 44, no. 1, pp. 51–60, January 1993.
    [94] E. W. Saad, D. V. Prokhorov, and I. Donald C. Wunsch, “Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks,” IEEE Transactions on Neural Networks, vol. 9, no. 6, pp. 1456–1470, November 1998.
    [95] K. J. Kim and I. Han, “Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index,” Expert Systems with Applications, vol. 19, no. 2, pp. 125–132, August 2000.
    [96] Y.-K. Kwon and B.-R. Moon, “A hybrid neurogenetic approach for stock forecasting,” IEEE Transactions on Neural Networks, vol. 18, no. 3, pp. 851–864, May 2007.
    [97] R.-J. Kuo, C.-H. Chen, and Y.-C. Hwang, “An intelligent stock trading decision support system through integration of genetic algorithm based fuzzy neural network and artificial neural network,” Fuzzy Sets and Systems, vol. 118, no. 1, pp. 21–45, February 2001.
    [98] P.-C. Chang and C.-H. Liu, “A TSK type fuzzy rule based system for stock price prediction,” Expert Systems with Applications, vol. 34, no. 1, pp. 135–144, January 2008.
    [99] T. V. Gestel, J. A. K. Suykens, D. E. Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele, B. D. Moor, and J. Vandewalle, “Financial time series prediction using least squares support vector machines within the evidence framework,” IEEE Transactions on Neural Networks, vol. 12, no. 4, pp. 809–821, July 2001.
    [100] F. E. H. Tay and L. Cao, “Application of support vector machines in financial time series forecasting,” Omega: The International Journal of Management Science, vol. 29, no. 4, pp. 309–317, August 2001.
    [101] L. Cao and F. E. H. Tay, “Financial forecasting using support vector machines,” Neural Computing & Applications, vol. 10, no. 2, pp. 184–192, May 2001.
    [102] H. Yang, L. Chan, and I. King, “Support vector machine regression for volatile stock market prediction,” in Proceedings of the 3rd International Conference on Intelligent Data Engineering and Automated Learning, August 2002, pp. 391–396.
    [103] L. Cao and F. E. H. Tay, “Support vector machine with adaptive parameters in financial time series forecasting,” IEEE Transactions on Neural Networks, vol. 14, no. 6, pp. 1506–1518, November 2003.
    [104] P.-C. Fernando, A. A.-R. Julio, and G. Javier, “Estimating GARCH models using support vector machines,” Quantitative Finance, vol. 3, no. 3, pp. 163–172, 2003.
    [105] P.-F. Pai and C.-S. Lin, “A hybrid ARIMA and support vector machines model in stock price forecasting,” Omega: The International Journal of Management Science, vol. 33, no. 6, pp. 497–505, December 2005.
    [106] G. Valeriy and B. Supriya, “Support vector machine as an efficient framework for stock market volatility forecasting,” Computational Management Science, vol. 3, no. 2, pp. 147–160, April 2006.
    [107] C.-Y. Yeh, C.-W. Huang, and S.-J. Lee, “A multiple-kernel support vector regression approach for stock market price forecasting,” Expert Systems with Applications, vol. 38, no. 3, pp. 2177–2186, March 2011.
    [108] S.-M. Chen, “Forecasting enrollments based on fuzzy time series,” Fuzzy Sets and Systems, vol. 81, no. 3, pp. 311–319, August 1996.
    [109] “Taiwan Stock Exchange Corporation.” [Online]. Available: http://www.twse.com.tw/
    [110] “National Association of Securities Dealers Automated Quotations.” [Online]. Available: http://www.nasdaq.com/
    [111] “Dow Jones Indexes.” [Online]. Available: http://www.djindexes.com/
    [112] “Central Bank of the Republic of China.” [Online]. Available: http://www.cbc.gov.tw/
    [113] C. Wagner and H. Hagras, “zSlices based general type-2 FLC for the control of autonomous mobile robots in real world environments,” in Proceedings of 135
    the IEEE international conference on Fuzzy Systems, August 2009, pp. 718–725.
    [114] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control, and Information. Upper Saddle River, NJ, USA: Prentice-Hall, December 1999.
    [115] J.-S. Wang and C.-S. G. Lee, “Self-adaptive neurofuzzy inference systems for classification applications,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6, pp. 790–802, December 2002.
    [116] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, 1975.
    [117] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, January 1989.
    [118] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.
    [119] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007. [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepository.html
    [120] “Taiwan Economic Journal Corporation Limited.” [Online]. Available: http://www.tej.com.tw/
    [121] T. H.-K. Yu and K.-H. Huarng, “Corrigendum to ‘a bivariate fuzzy time series model to forecast the taiex’,” Expert Systems with Applications, vol. 37, no. 7, p. 5529, July 2010.
    [122] “Taiwan Futures Exchange Corporation.” [Online]. Available: http://www.taifex.com.tw/
    口試委員
  • 吳志宏 - 召集委員
  • 侯俊良 - 委員
  • 歐陽振森 - 委員
  • 潘欣泰 - 委員
  • 蔡賢亮 - 委員
  • 賴智錦 - 委員
  • 李錫智 - 指導教授
  • 口試日期 2011-07-04 繳交日期 2011-07-19

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫