Responsive image
博碩士論文 etd-0719117-022650 詳細資訊
Title page for etd-0719117-022650
論文名稱
Title
海洋藥物PG在肝癌治療上的基礎研究
The Study of Marine Drug PG on Hepatocellular Carcinoma Therapy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-07
繳交日期
Date of Submission
2017-08-19
關鍵字
Keywords
肝癌、癌症幹細胞、醣基化、海洋藥物
Cancer stemness, Marine Secondary Metabolite, Hepatocelullar cacinoma, Glycosylation
統計
Statistics
本論文已被瀏覽 5856 次,被下載 25
The thesis/dissertation has been browsed 5856 times, has been downloaded 25 times.
中文摘要
人類從古時候開始就運用了許多陸生動物作為醫藥封面的資源,但到目前為止還是有許多疾病仍無法被根治,由於海洋生物生存環境特殊,需要具有適應高壓、高鹽、低氧的棲地,因此其天然物具有特殊的化學結構。雖然人類運用海洋資源進行藥物篩選的時間比陸地上少了很多,但海洋藥物的成功案例卻比陸地資源高很多,現在已經有許多海洋藥物運用在臨床醫學上,相信不久後海洋的資源可以解決人類現今無法解決的疾病。
由於肝癌是現在台灣癌症十大死亡原因之一且到目前為止,肝癌唯一的標靶藥物sorafenib經過長期觀察,對醫治肝癌的能力與肝癌患者的存活率效果並不顯著,因此開發肝癌新藥是現今重要的課題。本篇研究是從海洋細菌所萃取出的次級代謝產物,並評估其抑制肝癌細胞生長的能力。
先前研究已經發現這種海洋二次代謝產物在大腸癌針對p53突變有明顯的療效並提升p73的表現能力。除了抗癌以外,此藥物也有抗細菌、抗瘧疾等能力。本篇論文研究發現此藥物會抑制細胞的細胞生長(Akt)和癌幹細胞球體生成(CD133)。在腫瘤生長方面,醣基化參與細胞對蛋白質的折疊修飾,關係到蛋白質功能的表現。本篇論文也發現此藥物會有效影響N-link醣基化的能力,其中癌幹細胞指標CD133和Akt的上游基因,受體酪氨酸激酶(Receptor Tyrosine Kinase)都有發現因為抑制醣基化導致分子量下降的情況,用電腦進行分子模擬發現,此藥物會與DPAGT1這個N-link醣基化的初始酶交互作用而影響醣基化活性。海洋藥物也會和Casein kinase2的protein kinase domain交互作用,可以阻斷Casein kinase 2對PTEN磷酸化表現來達到提升PTEN的表現能力來抑制Akt的訊息傳遞路徑。在腫瘤免疫系統方面,此藥物可以藉由抑制免疫檢查點PD-L1的表現量和N-link醣基化,進而影響調控型T細胞Tregs抑制免疫系統的能力來促進免疫系統的運作。從實驗的數據顯示,此化合物對肝癌展現了強大的治療能力,可以抑制細胞生長、癌幹細胞球體形成和促進免疫系統活化來抑制肝癌細胞的生長。動物實驗抑制腫瘤大小,免疫染色中抑制細胞增生並促進細胞凋亡,腫瘤中抑制調控型T細胞。因此海洋二次代謝物可藉由N-LINK唐基來抑制癌幹細胞和免疫檢查點,除此之外可以抑制CK2-PTEN-AKT的訊息傳遞路徑來達到抑制癌細胞增生與促進細胞凋亡的效果。
Abstract
Since ancient times, humans have used many terrestrial animals as a medical application, but so far there are still many diseases still cannot be cured. Due to the special creatures living in the ocean, they need to adapt to high pressure, high salt, and hypoxia habitat. Thus, it has a special chemical structure. Although human used of marine resources for drug screening time was much less than the land, but the success stories of marine drugs was much higher than the land resources, and now there are many marine drugs used in clinical medicine, I believe that the ocean resources can resolve the problems that human beings cannot solve the diseases nowadays.
Liver cancer is one of the top ten causes of cancer in Taiwan, the only liver cancer target drug sorafenib, had poor liver cancer survival rate after long-term observation, so the development of new drugs is an important project. This study is a secondary metabolite extracted from marine bacteria and assesses its ability to inhibit the growth of hepatocellular carcinoma cells.
Previous studies have found that this marine secondary metabolite in colorectal cancer for p53 mutations have a significant effect and enhance the performance of p73. In addition to anti-cancer, the drug also has anti-bacterial, anti-malarial and other capabilities. This paper investigates that this drug inhibited cell growth (Akt) and cancer stem cell spheroid formation (CD133). In tumor growth, glycosylation involved in cell folding modification of the protein, related to the performance of protein function. This paper also found that this drug would effectively affect the ability of N-link glycosylation, in which cancer stem cell markers CD133 and Akt upstream gene, receptor tyrosine kinase (Receptor Tyrosine Kinase) had been found that inhibition of glycosylation Molecular weight shifting, the use of computer simulation found that the drug would dock on DPAGT1, the N-link glycosylation initial enzyme, and affect the glycosylation activity. Moreover, marine drug could dock on Casein kinase2 protein kinase domain and block p-PTEN expression to achieve the ability to enhance the performance of PTEN to inhibit CK2-PTEN-Akt signaling pathway. In tumor immune system, this drug can promote the operation of the immune system by inhibiting immune-checkpoint PD-L1 and N-link glycosylation, thereby influencing the ability of regulatory T cell Tregs to inhibit the immune system. Animal experiments inhibited tumor sizes; immunostaining inhibited cell proliferation and promoted apoptosis and suppressed regulatory T cells. Therefore, the secondary metabolites of the ocean can inhibit the cancer stem cells and immune check point by N-linked glycosylation. In addition, suppressed CK2-PTEN-Akt signaling pathway to inhibit cell proliferation and promote cell apoptosis effect.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
中文摘要 iii
ABSTRACT v
INTRODUCTION 1
RESULTS 15
DISSCUSION 29
REFERENCES 70
參考文獻 References
1. Parkin, D.M., et al., Estimating the world cancer burden: Globocan 2000. Int J Cancer, 2001. 94(2): p. 153-6.
2. Dobbs, N.A., et al., Epirubicin in hepatocellular carcinoma: pharmacokinetics and clinical activity. Cancer Chemother Pharmacol, 1994. 34(5): p. 405-10.
3. Wilhelm, S., et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov, 2006. 5(10): p. 835-44.
4. Genco, C., et al., Treatment of hepatocellular carcinoma: present and future. Expert Rev Anticancer Ther, 2013. 13(4): p. 469-79.
5. Chen, S.C., et al., Inhibitory effect of dihydroaustrasulfone alcohol on the migration of human non-small cell lung carcinoma A549 cells and the antitumor effect on a Lewis lung carcinoma-bearing tumor model in C57BL/6J mice. Mar Drugs, 2014. 12(1): p. 196-213.
6. Wen, Z.H., et al., A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur J Med Chem, 2010. 45(12): p. 5998-6004.
7. Jean, Y.H., et al., Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur J Pharmacol, 2008. 578(2-3): p. 323-31.
8. Lin, S.W, et al.,Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015 Feb 6;13(2):861-78.
9. Berg, G. Diversity of antifungal and plant-associated Serratia plymuthica strains. J. Appl. Microbiol. 88, 952–960 (2000).
10. Castro, A. J. Antimalarial Activity of Prodigiosin. Nature 213, 903–904 (1967).
11. Magae, J., Miller, M. W., Nagai, K. & Shearer, G. M. Effect of metacycloprodigiosin, an inhibitor of killer T cells on murine skin and heart transplants. J. Antibiot. (Tokyo) 49, 86–90 (1996).
12. Bo Hong, Varun V. Prabhu, Shengliang Zhang, et al., Prodigiosin Rescues Deficient p53 Signaling and Antitumor Effects via Upregulating p73 and Disrupting Its Interaction with Mutant p53. Cancer Res, 2014;74:1153-1165.
13. Salomé S. Pinho and Celso A. Reis, Glycosylation in cancer: mechanisms and clinical implications. Nature review cancer. 15, 540–555(2015)
14. J D Meissner, A Naumann, W H Mueller, and R J Scheibe. Regulation of UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosamine-1-phosphate transferase by retinoic acid in P19 cells. Biochem J. 1999 Mar 1; 338(Pt 2): 561–568.
15. Nita-Lazar M, Noonan V, Rebustini I, Walker J, Menko AS, Kukuruzinska MA.
Overexpression of DPAGT1 leads to aberrant N-glycosylation of E-cadherin and cellular discohesion in oral cancer. Cancer Res 2009;69:5673–80.
16. Monga SP. Role of Wnt/beta-catenin signaling in liver metabolism and cancer.Int J Biochem Cell Biol 2011;43:1021–9.
17. Tannishtha Reya, Sean J. Morrison, Michael F. Clarke & Irving L. Weissman. Stem cell, cancer and cancer stem cells. Nature.2001; 414(6859):105-111
18. Stephanie Ma, Kwok Wah Chan, Terence Kin-Wah Lee, Kwan Ho Tang, Jana Yim-Hung Wo, Bo-Jian Zheng and Xin-Yuan Guan. Aldehyde Dehydrogenase Discriminates the CD133 Liver Cancer Stem Cell Populations. Mol Cancer Res. 2008; 6(7):1146-1153.
19. Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007 Jun;132(7):2542-56.
20. Zhu Z1, Hao X, Yan M, Yao M, Ge C, Gu J, Li J. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma.
Int J Cancer. 2010 May 1;126(9):2067-78.
21. Yang XR1, Xu Y, Yu B, Zhou J, Qiu SJ, Shi GM, Zhang BH, Wu WZ, Shi YH, Wu B, Yang GH, Ji Y, Fan J. High expression levels of putative hepatic stem/progenitor cell biomarkers related to tumour angiogenesis and poor prognosis of hepatocellular carcinoma. Gut. 2010 Jul;59(7):953-62.
22. Chu, T.H., et al., Celecoxib suppresses hepatoma stemness and progression by up-regulating PTEN. Oncotarget, 2014. 5(6): p. 1475-90.
23. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5:1365–9.
24. Lastwika KJ1, Wilson W 3rd2, Li QK3, Norris J4, Xu H5, Ghazarian SR6, Kitagawa H4, Kawabata S4, Taube JM5, Yao S7, Liu LN7, Gills JJ4, Dennis PA8.Control of PD-L1 Expression by Oncogenic Activation of the AKT-mTOR Pathway in Non-Small Cell Lung Cancer. Cancer Res. 2016 Jan 15;76(2):227-38.
25. Torres J1, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus. Implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001 Jan 12;276(2):993-8.
26. Selvaraj M, Malik BK. Modeling of human CCR5 as target for HIV-I and virtual screening with therapeutic compounds. Bioinformation. 2008;3:89–94. doi: 10.6026/97320630003024.
27. Spassov VZ, Flook PK, Yan L. LOOPER: a molecular mechanics based algorithm for protein loop prediction. Prot Eng Des Sel. 2008;21:91–100. doi: 10.1093/protein/gzm083
28. Chitra P, Jeyanthi GP. In silco drug designing approaches for latent autoimmune diabetes in adults. Int J Pharma Bio Sci. 2011;2:16–27.
29. Pabba Shiva Krishna, Kompally Vani, Metuku Ram Prasad, Burra Samatha, Nidadavolu Shesha Venkata Sathya Siva Surya Laxmi Hima Bindu, Maringanti Alaha Singara Charya, and Prakasham Reddy Shetty .In –silico molecular docking analysis of prodigiosin and cycloprodigiosin as COX-2 inhibitors. Springerplus. 2013; 2(1): 172.
30. Scott G. Kennedy., Akt/Protein Kinase B Inhibits Cell Death by Preventing the Release of Cytochrome c from Mitochondria. Mol Cell Biol. 1999 Aug; 19(8): 5800–5810.
31. Yang ZZ, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings BA. Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans. April 2004, 32 (Pt 2): 350–4.
32. Varki A, Cummings RD, Esko JD, et al. Cellular Organization of Glycosylation. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009.
33. Pritam K. Sengupta, Meghan P. Bouchie, Mihai Nita-Lazar, Hsiao-Ying Yang, Maria A. Kukuruzinska.
Coordinate regulation of N-glycosylation gene DPAGT1, canonical Wnt signaling and E-cadherin adhesion. J Cell Sci 2013 126: 484-496; doi: 10.1242/jcs.113035
34. Andresen L1, Skovbakke SL, Persson G, Hagemann-Jensen M, Hansen KA, Jensen H, Skov S. 2-deoxy D-glucose prevents cell surface expression of NKG2D ligands through inhibition of N-linked glycosylation. J Immunol. 2012 Feb 15;188(4):1847-55. doi
35. Bing-Hua Jiang, Ling-Zhi Liu. PI3K/PTEN Signaling in Angiogenesis and Tumorigenesis. Adv Cancer Res. 2009; 102: 19–65.
36. Shi Y1, Paluch BE, Wang X, Jiang X. PTEN at a glance. J Cell Sci. 2012 Oct 15;125(Pt 20):4687-92
37. Chia-Wei Li, Seung-Oe Lim,et al., Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications 7, Article number: 12632 (2016)
38. Bin Shang,1 Yao Liu,2 Shu-juan Jiang,2 and Yi Liua,2., Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015; 5: 15179.
39. Lissa Nurrul Abdullah1 and Edward Kai-Hua Chow1,2., Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013; 2: 3.
40. DA Altomare and AR Khaled., Homeostasis and the Importance for a Balance Between AKT/mTOR Activity and Intracellular Signaling. Curr Med Chem. 2012 Aug; 19(22): 3748–3762.
41. Wei Y1, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Liu Y, Cao B, Liu C, Wu G, Ao H, Zhang X, Jiang J.,
Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6829-34.
42. Sean R. Stowell,1 Tongzhong Ju,2 and Richard D. Cummings2., Protein Glycosylation in Cancer. Annu Rev Pathol. 2015; 10: 473–510.
43. Ying Liu,#1 Shifang Ren,#1 Liqi Xie,2 Chunhong Cui,1 Yang Xing,1 Chanjuan Liu,1 Benjin Cao,1 Fan Yang,1 Yinan Li,1Xiaoning Chen,1 Yuanyan Wei,1 Haojie Lu,2 and Jianhai Jiang1., Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth. Oncotarget. 2015 Aug 21; 6(24): 20650–20660.
44. Dricu A1, Carlberg M, Wang M, Larsson O.,
Inhibition of N-linked glycosylation using tunicamycin causes cell death in malignant cells: role of down-regulation of the insulin-like growth factor 1 receptor in induction of apoptosis. Cancer Res. 1997 Feb 1;57(3):543-8.
45. Jörg Breitling and Markus Aebi., N-Linked Protein Glycosylation in the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol. 2013 Aug; 5(8): a013359.
46. Hanif IM1, Hanif IM, Shazib MA, Ahmad KA, Pervaiz S., Casein Kinase II: an attractive target for anti-cancer drug design. Int J Biochem Cell Biol. 2010 Oct;42(10):1602-5.
47. Xinbing Sui,#1,2,3 Junhong Ma,#5 Weidong Han,1,2 Xian Wang,1,2 Yong Fang,1,2 Da Li,1 Hongming Pan,1,2,3 and Li Zhang3,4., The anticancer immune response of anti-PD-1/PD-L1 and the genetic determinants of response to anti-PD-1/PD-L1 antibodies in cancer patients. Oncotarget. 2015 Aug 14; 6(23): 19393–19404.
48. Frank A Sinicrope, Rafaela L Rego, Stephen M Ansell, Keith L Knutson, Nathan R Foster, and Daniel J Sargent., A low intraepithelial effector (CD3+):regulatory (FoxP3+) T-cell ratio predicts adverse outcome of human colon carcinoma. Gastroenterology. 2009 Oct; 137(4): 1270–1279.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code