Responsive image
博碩士論文 etd-0720105-134415 詳細資訊
Title page for etd-0720105-134415
論文名稱
Title
大氣電漿系統表面改質技術及其於微流體生物晶片製程之應用
The Applications of Atmospheric Plasma Systems on Microfluidic Chip Fabrication and Surface Modification
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
134
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-25
繳交日期
Date of Submission
2005-07-20
關鍵字
Keywords
表面改質、接合強度、混合效率、大氣電漿
mixing performance, bonded strength, surface modification, Atmospheric pressure plasma
統計
Statistics
本論文已被瀏覽 5724 次,被下載 71
The thesis/dissertation has been browsed 5724 times, has been downloaded 71 times.
中文摘要
本篇研究回顧大氣電漿技術之相關文獻,瞭解目前大氣電漿所達之技術層面。同時對市面上三類大氣電漿設備餘暉放電電漿、介電質放電電漿以及火焰電漿進行應用性之實驗評估,結果顯示介電質放電電漿設備最適合處理高分子聚合物。本論文並以此類大氣電漿設備進行PMMA、PDMS及PC等塑膠基材表面改質研究,並以多項表面檢測技術分析經大氣電漿改質後之高分子材料表面性質。
以表面潤濕儀量測電漿處理後之高分子材料表面皆呈現明顯親水現象。傅氏紅外線光譜分析經電漿處理後之PDMS表面,其表面確實於1040 cm-1之波數位置產生-C-O-H親水官能基。以X光光電子能譜儀檢測經電漿處理後之表面元素組成,結果顯示PDMS表面氧/碳原子比值增加至未處理的3.5倍。以及利用掃瞄式電子顯微鏡(SEM)與原子力顯微鏡(AFM)觀察樣本表面形貌,觀察結果發現經電漿處理後樣本之表面粗糙度僅呈現數奈米之變化。研究中發展電漿接合高分子基材之技術,該接合技術可在低溫下進行接合,因此不致於接合過程中發生熱變形,且其接合程序可於6分鐘內完成。接合強度之拉伸試驗結果顯示,電漿無膠接合PMMA基板之強度為熱壓接合之7.7倍,若以酒精輔助電漿接合,則其強度可高達3.81 MPa以上,為目前文獻報導最高者,該技術並可成功接合PMMA/PC兩種不同之材料。
最後則以三種微流體晶片之實施例,驗證大氣電漿接合技術於微流體生醫晶片製程應用,研究設計兩組具有三層基板結構之微流體迴旋式混合器及一組毛細管電泳晶片進行測試。實驗結果顯示,該迴旋式混合器於低雷諾數之操作條件下(Re = 4),便可達90%之混合效率。毛細管電泳晶片之測試顯示,電漿接合之十字形電泳晶片可穩定將染劑注射與分離達30分鐘以上,且可成功分離100 bp至3000 bp 之DNA標準樣本。本研究所發展之大氣電漿接合技術不僅可應用於生醫晶片之製程,且其接合效率高、接合品質好,為一具有高商業潛力之技術。
Abstract
This paper presents new bonding and surface modification methods for plastic substrates utilizing atmospheric pressure plasma (AP plasma) treatment. Three kinds of AP plasma equipments including after-glow discharge, dielectric barrier discharge and flame type are tested and evaluated for their feasibility of microfluidic device fabrication. The experimental results show that the DBD plasma equipment is the most suitable one for microfluidic applications due to its low temperature and high treating level. Three kinds of polymenr including PMMA, PC and PDMS are used as the sample substrates for evaluating the performance of AP plasma in this study. Experimental results show that the polymer surface turns into hydrophilic after AP plasma treatment. Fourier Transform Infrared Spectroscopy (FTIR) inspection indicates that a new peak corresponding to -C-OH functional group is generated at the wavenumber of 1040 cm-1 after AP plasma treatment. X-ray photoelectron spectrum investigation also shows that the O/C (atom ratio) is 3.5-fold incensement in compare with the bare sample. SEM and AFM observations are utilized to evaluate the surface morphology change after plasma treatment. The measured surface roughness is at the level of several nanometers which is acceptable for most microfluidic applications. We develop two simple and high strength bonding methods for sealing microfluidic deivices in this study. The bonding process can be achieved in 6 minutes and bonding strength of 1.69 MPa and 3.81 MPa can be obtained using direct plasma bonding and ethyl alcohol assisted bonding, respectively. The bonding strength obtained using ethyl alcohol assisted bonding technique reported in this study is the highest one that ever been reported.
The feasibility of AP plasma treatment for sealing microfluidic chips are confirmed by three examples including two novel passive microfluidic mixers and one cross-type micro CE chip. Experimental result shows that the mixing performance of the micromixer can reach up to 90% at an operation condition of a low Reynolds number of 4. In addition, micro CE chip sealed with the proposed method can successfully inject and separate dye sample with a long-term stability upto 30 minutes. Separation of 100 bp standard DNA sample of 100 bp to 3000 is also successfully demonstrated with high separation efficiency. It is the author’s firm believes that the proposed bonding method will give substaintial impact on the fabrication of microfluidic device in the future.
目次 Table of Contents
謝誌......................................................I
中文摘要.................................................II
英文摘要.................................................IV
目錄.....................................................VI
表目錄.................................................XI
圖目錄..................................................XII

第一章 緒論...............................................1
1.1 前言...............................................1
1.2 電漿簡介...........................................2
1.3 大氣電漿之生成.....................................6
1.4 大氣電漿與傳統電漿.................................9
1.5 研究動機與目的....................................10
1.6 研究方法..........................................12

第二章 文獻回顧..........................................14
2.1 大氣電漿之基本特性...................................14
2.2 三類大氣電漿種類.....................................18
2.2.1 餘暉放電(After Glow).............................19
2.2.2 介電質放電(Dielectric Barrier Discharge, DBD).............21
2.2.3 火焰電漿(Flame)..................................22
2.3 大氣電漿之應用回顧...................................22
2.3.1 沈積...............................................22
2.3.2 蝕刻...............................................26
2.3.3 表面改質...........................................27
2.3.4 表面清潔...........................................31
2.3.5 無電鍍.............................................32
2.4 電漿接合技術.........................................33

第三章 三類大氣電漿之應用與評估..........................35
3.1三類大氣電漿於塑膠基材接合及於表面形貌影響之評估實驗..35
3.1.1 餘暉放電電漿.......................................35
3.1.1.1 餘暉放電塑膠基材接合實驗.........................37
3.1.1.2 餘暉放電處理前後於塑膠晶片表面形貌之影響.........40
3.1.2 介電質放電.........................................43
3.1.2.1 介電質放電塑膠基材接合實驗.......................43
3.1.2.2 介電質放電處理前後於塑膠晶片表面形貌之影響.......45
3.1.3 火焰電漿...........................................47
3.1.3.1 火焰電漿塑膠基材接合實驗.........................47
3.1.3.2 火焰電漿處理前後於塑膠晶片表面形貌之影響.........48
3.2 紡織產業之纖維布料表面處理應用評估實驗...............50
3.2.1 紡織纖維布料表面處理...............................50
3.2.2 水滴擴散實驗.......................................52
3.2.3 撥水劑披覆接枝實驗.................................56
3.2.4 電子掃瞄顯微鏡觀測PET聚酯纖維......................58
3.2.5 大氣電漿應用於PET聚酯纖維表面處理之結果............60
3.3 半導體產業之ITO玻璃清潔及光阻去除效率應用評估實驗....61
3.3.1 ITO玻璃表面清潔....................................61
3.3.2 AZ4620光阻去除.................................... 62
3.4 應用評估實驗之結果...................................65

第四章 塑膠基材表面改質之表面分析與探討..................67
4.1 大氣電漿表面改質原理.................................67
4.2 大氣電漿表面改質分析之設備系統架設...................69
4.2.1 大氣電漿設備及實驗參數設計.........................69
4.2.2表面潤濕性儀器之建構與測試......................... 70
4.3 大氣電漿表面改質之表面分析實驗.......................73
4.3.1 表面潤濕性及表面能之量測...........................73
4.3.2 傅氏紅外線光譜儀量測...............................79
4.3.3 X光光電子光譜儀量測................................82
4.3.4 表面粗糙度量測.....................................86
4.4 大氣電漿接合技術.....................................88
4.4.1 直接接合...........................................88
4.4.2 添加酒精輔助接合...................................90

第五章 微流體微型混合器及CE電泳晶片之應用................98
5.1 自旋式微流體微型混合器晶片..........................101
5.1.1 自旋式微行混合器設計原理..........................101
5.1.2 晶片製作與材料....................................103
5.1.3 自旋微型混合器晶片之實驗系統架設..................107
5.1.4 自旋微型混合器之實驗結果與討論....................108
5.2 非平衡式微流體混合器晶片製作之應用..................112
5.2.1 晶片設計、原理與製作..............................112
5.2.2 非平衡式微流體晶片之實驗結果與討論................113
5.3 CE毛細管電泳十字型晶片之應用........................115
5.3.1 毛細管電泳晶片....................................115
5.3.2 電漿輔助接合應用於十字形晶片之電泳實驗............116

第六章 結論與未來展望..................................121
6.1 結論................................................121
6.2 未來展望............................................123
參考文獻................................................125
參考文獻 References
1. S. P. R. Hippler, M. Schmidt, K. H. Shoenbach, Low temperature plasma physics:fundamental aspects and applications: Wiley-Vch, 2002.
2. A. J. Lichtenberg, M. A. Lieberman, Principles of plasma discharges and materials processing. New York: Wiley, 1994.
3. C. H. Kruger, "Experimental investigation of atmospheric pressure nonequilibrium plasma chemistry," IEEE transactions on plasma science, vol. 25, pp. 1042-1051, 1997.
4. J. Y. Jeong, A. Schutze, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks, "The atmospheric pressure plasma jet : a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, pp. 1685-1694, 1998.
5. W. D. Holland, C. E. Gleit, "Use of electrically excited oxygen for the low temperature decomposition of organic substances," Analytical Chemistry, vol. 34, pp. 1454-1457, 1962.
6. N. Nakanom, M. Shibata, T. Makabe, "Effect of O2 on plasma structures in oxygen radio frequency discharges," Journal of applied physics, vol. 80, pp. 6142-6147, 1996.
7. R. Gijbels, A. Bogaerts, "Fundamental aspects and applications of glow discharge spectrometric techniques," Spectrochimica Acta Part B, vol. 53, pp. 1-42, 1998.
8. R. J. Carman, "A simulation of electron motion in the cathode sheath region of a glow discharge in argon," Journal of Physics D: Apply Physics, vol. 22, pp. 55, 1989.
9. K. H. Schoenbach, R. H. Stark, "Direct current high pressure low discharges," Journal of Apply Physics, vol. 85, pp. 2075-2080, 1999.
10. R. H. Stark, "Direct current glow discharges in atmospheric air," Apply Physics Letter, vol. 74, pp. 3770-3772, 1999.
11. T. Czerfalvi, "Emission studies on a glow discharge in atmospheric pressure air using water as a cathode," Journal of Physics D: Apply Physics, vol. 26, pp. 2184-2188, 1993.
12. T. Cserfalvi, P. Mezei, M. Janossy, "Pressure dependence of the atmospheric electrolyte cathode glow discharge spectrum," Journal of Analytical Atomic Spectrometry, vol. 12, pp. 1203-1208, 1997.
13. A. Rabehi, F. Massines, P. Decomps, R. B. Gadri, P. Sequr, C. Mayoux, "Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier," Journal of Apply Physics, vol. 83, pp. 2950-2957, 1998.
14. A. Grill, Cold Plasma Materials Fabrication:From Fundamentals to Applications: Wiley-IEEE Press, 1994.
15. E. Neyts, A. Bogaerts, R. Gijbels, J. v. d. Mullen, "Gas dicharge plasmas and their applications," Spectrochimica Acta Part B, vol. 57, pp. 609-658, 2002.
16. Y. P. Raizer, Gas Discharge Physics. Berlin: Springer, 1991.
17. U. Kogelschatz, "From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges," Pure Apply Chemistry, vol. 71, pp. 1819-1828, 1999.
18. G. J. Pitsch, V. I Gibalov, "The development of dielectric barrier discharges in gas gaps and on surfaces," Journal of Physics D: Apply Physics, vol. 33, pp. 2618-2636, 2000.
19. J. G. John, M. Goodings, A. N. Hayhurst, S. G. Taylor, "Current-Voltage characteristics in a flame plasma: analysis for positive and negative ions, with applications," International Journal of Mass Spectrometry, vol. 206, pp. 137-151, 2001.
20. J. G. John, M. Goodings, J. G. Laframboise, "Electrochemical diffusion potential in a flame plasma: theory and experiment," Electrochemistry Communications, vol. 4, pp. 363-369, 2002.
21. J. Salge, "Plasma-assisted deposition at atmospheric pressure," Surface and Coatings Technology, vol. 80, pp. 1-7, 1996.
22. B. K. Moon, H. Hz, T. Horiuchi, T. Inushima, H. Ishiwara, H. Koinuma, "Structure and electric properties of TiO2 films prepared by cold plasma torch under atmospheric pressure," Materials Science and Engineering, vol. B41, pp. 143-147, 1996.
23. E. Rauchle, W. Petasch, H. Muegge, K. Muegge, "Duo-Plasmaline- a linearly extended homogeneous low pressure plasma source," Surface and Coatings Technology, vol. 93, pp. 112-118, 1997.
24. J. Scott, K. Baldwin, T. G. Owano, M. Zhao, C. H. Kruger, "Enhanced deposition rate of diamond in atmospheric pressure plasma CVD: effects of a secondary discharge," Diamond and Related Materials, vol. 6, pp. 202-206, 1997.
25. Y. J. Koh, R. Prat, Y. Baukutty, M. Kogoma, S. OKazaki, M. Kodama, "Polymer deposition using atmospheric pressure plasma glow (APG) discharge," Polymer, vol. 41, pp. 7355-7360, 2000.
26. E. Dekempeneer, O. Goossens, D. Vangeneugden, R. V. d. Leest, C. Leys, "Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation," Surface and Coatings Technology, vol. 142-144, pp. 474-481, 2001.
27. J. Y. Jeong, S. E. Babayan, A Schuze, V. J. Tu, M. Moravej, G. S. Selwyn, R. F. Hicks, "Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 10, pp. 573-578, 2001.
28. S. E. Babayan, G. R. Nowling, V. Fankovic, R. F. Hicks, "Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure," Plasma Sources Science and Technology, vol. 11, pp. 97-103, 2002.
29. A. Dinkelmann, I. P. Vinogradov, A. Lunk, "Deposition of fluorocarbon polymer films in a dielectric barrier discharge (DBD)," Surface and coatings Technology, vol. 174-175, pp. 509-514, 2003.
30. A. Huicka, A. Churpita, M. Cada, D. Chvostova, L. Soukup, L. Jastrabik, P. Ptacek, "Deposition of InxOy and SnOx thin films on polymer substrate by means of atmospheric barrier-torch discharge," Surface and Coatings Technology, vol. 174-175, pp. 1059-1063, 2003.
31.Z. Hubicka, L. Soukup, A. Churpita, M. Cada, P. Pokorny, J. Zemek, K. Jurek, L. Jastrabik, "Investigation of the atmospheric RF torch-barrier plasma jet for deposition of CeOx thin films," Surface and Coatings Technology, vol. 169-170, pp. 571-574, 2003.
32. P. Sichler, L. B. Hibbe, C. Schrader, C. Gebner, K. H. Gericke, S. Buttgenbach, "Micro-structured electrode arrays: atmospheric pressure plasma processes and applications," Surface and Coatings Technology, vol. 174-175, pp. 519-523, 2003.
33. F. Adler, R. Foest, F. Sigeneger, M. Schmidt, "Study of an atmospheric pressure glow discharge (APG) for thin film deposition," Surface and Coatings Technology, vol. 163-164, pp. 323-330, 2003.
34. K. Yoshii, Y. Mori, K. Yasutake, H. Kakiuchi, H. Ohmi, K. Wada, "High-rate growth of epitaxial silicon at low temperatures (530-690°C) by atmospheric pressure plasma chemical vapor deposition," Thin Solid Films, vol. 444, pp. 138-145, 2003.
35. R. Cihar, A. Pfuch, "Deposition of SiOx thin films by microwave induced plasma CVD at atmospheric pressure," Surface and Coatings Technology, vol. 183, pp. 134-140, 2004.
36. H. Koinuma, T. Terajima, "Development of a combinatorial atmospheric pressure cold plasma processor," Applied Surface Science, vol. 223, pp. 259-263, 2004.
37. S. Manolache, F. S. Denes, "Macromolecular plasma-chemistry: an emerging field of polymer science," Progress in Polymer Science, vol. 29, pp. 815-885, 2004.
38. H. Barankoa, L. Bardos, L. E. Gustavsson, D. G. Teer, "New microwave and hollow cathode hybrid plasma sources," Surface and Coatings Technology, vol. 177-178, pp. 651-656, 2004.
39. X. Yao, H. Huang, "Preparation of LaNiOx thin films by mist plasma evaporation," Thin Solid Films, vol. 462-463, pp. 123-126, 2004.
40. X. Yao, H. Huang, "Preparation of rutile TiO2 thin films by mist plasma evaporation," Journal of Crystal Growth, vol. 268, pp. 564-567, 2004.
41. X. Yao, H. Huang, "Preparation and characterization of rutle TiOx thin films by mist plasma evaporation," Surface and Coatings Technology, vol. 191, pp. 54-58, 2005.
42. S. E. Babayan, J. Y. Jeong, A. Schutze, V. J. Tu, J. Park, I. Henins, G. S. Selwyn, R. F. Hicks, "Etching polyimide with a nonequilibrium atmospheric pressure plasma jet," Journal of Vacuum Science and Technology A, vol. 17, pp. 2581-2585, 1999.
43. K. Inomata, K. Chaudhary, M. Yoshimoto, H. Koinuma, "Open-air silicon etching by H2-He-CH4 flowing cold plasma," Materials Letters, vol. 57, pp. 3406-3411, 2003.
44. Y. h. Lee, C. H. Yi, D. W. Kim, G. Y. Yeom, "Characteristic of a dielectric barrier discharges using capillary dielectric and its application to photoresist etching," Surface and Coatings Technology, vol. 163-164, pp. 723-727, 2003.
45. C. H. Yi, Y. H. Lee, M. J. Chung, G. Y. Yeom, "Characteristics of He/O2 atmospheric pressure golw discharge and its dry etching properties of organic materials," Surface and Coatings Technology, vol. 146-147, pp. 474-479, 2001.
46. M. Moravej, X. Yang, S. E. Babayan, G. R. Nowling, R. F. Hicks, "Etching of uraium oxide with a non-thermal, atmospheric pressure plasma," Journal of Nuclear Materials, vol. 324, pp. 134-139, 2004.
47. H. Barankova, L. Bardos, "Radio frequency hollow cathode source for large area cold atmospheric plasma applications," Surface and Coatings Technology, vol. 133-134, pp. 522-527, 2000.
48. L. Barankova, H. Barankova, "Hollow cathode plasma sources for large area surface treatment," Surface and Coatings Technology, vol. 146-147, pp. 486-490, 2001.
49. M. C. L. Hoare, M. J. Shenton, G. C. Stevens, "Adhesion enhancement of polymer surfaces by atmospheric plasma treatment," Journal of Physics D: Applied Physics, vol. 34, pp. 2754-2760, 2001.
50. N. M. D. Brown, N. Y. Cui, "Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma," Applied Surface Science, vol. 189, pp. 31-38, 2002.
51. T. Katsumta, J. Toshifuji, H. Takikawa, T. Sakakibara, I. Shimizu, "Cold arc-plasma jet under atmospheric pressure for surface modification," Surface and Coatings Technology, vol. 171, pp. 302-306, 2003.
52. M. J. Jung, Y. M. Chung, M. W. Lee, J. G. Han, "Surface modification effects on film growth with atmospheric Ar/Ar+O2 plasma," Surface and Coatings Technology, vol. 174, pp. 1038-1042, 2003.
53. D. K. Song, M.C. Kim, H. S. Shin, S. H. Baeg, G. S. Kim, J. H. Boo, J. G. Han, S. H. Yang, "Surface modification for hydrophilic property of stainless steel treated by atmospheric pressure plasma jet," Surface and Coatings Technology, vol. 171, pp. 312-316, 2003.
54. S. H. Yang, M. C. Kim, J, H. Boo, J. G. Han, "Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics," Surface an Coatings Technology, vol. 174, pp. 839-844, 2003.
55. A. Wolkenhauer, P. Rehn, M. Benta, S. Forster, W. Viol, "Wood surface modification in dielectric barrier discharges at atmospheric pressure," Surface and Coatings Technology, vol. 174-175, pp. 515-518, 2003.
56. M. J. Jung, Y. M. Chung, J. G. Han, M. W. Lee, Y. M. Kim, "Atmospheric RF plasma effects on the film adhesion property," Thin Solid Films, vol. 447-448, pp. 354-358, 2004.
57. J. Degenhardt, M. Noesks, S. Strudthoff, U. Lommatzsch, "Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion," International Journal of Adhesion & Adhesives, vol. 24, pp. 171-177, 2004.
58. V. Bartels, C. Gebner, T. Betker, U. Matucha, C. Penache, C. P. Klages, "Surface modification for biomedical purposes utilizing dielectric barrier discharges at atmospheric pressure," Thin Solid Films, vol. 459, pp. 118-121, 2004.
59. M. C. Gupta, S. Yang, "Surface modification of polyethylenetere
phthalate by an atmospheric pressure plasma sorce," Surface and
Coatings Technology, vol. 187, pp. 172-176, 2004.
60. J. H. Kim, Y. H. Choi, K. H. Paek, W. T. Ju, Y.S. Hwang, "Characteristics of atmospheric pressure N2 cold plasma torch using 60 Hz AC power and its application to polymer surface modification," Surface and Coatings Technology, vol. 193, pp. 319-324, 2005.
61. D. J. Upadhyay, N. Y. Cui, C. A. Anderson, N. M. D. Brown, "Study of the surface modification of a Nylon-6,6 film processed in an atmospheric pressure air dielectric barrier discharge," Surface and Coatings Technology, vol. 192, pp. 94-100, 2005.
62. Y. H. Lee, C. H. Yi, G. Y. Yeom, "The study of atmospheric pressure plasma for surface cleaning," Surface and Coatings Technology, vol. 171, pp. 237-240, 2003.
63. H. I. Park, E. S. Lee, H. K. Baik, S. J. Lee, K. M. Song, M. K. Hwang, C. S. Huh, "Multi-jet atmospheric glow plasma cleaning of ablation debris from micro-via drilling process," Surface and Coatings Technology, vol. 171, pp. 307-311, 2003.
64. H. Horn, S. Beil, A. Windisch, C. Hilgers, K. Pochner, "Photochemical functionalization of polymer surfaces for subsequent metallization," Surface and Coatings Technology, vol. 116-119, pp. 1195-1203, 1999.
65. J. Rahel, M. Simor, M. Cernak, Y. Imahori, M. Stefecka, M. Kando, "Atmospheric pressure plasma treatment of polyester nonwoven fabrics for electroless plaing," Surface and Coatings Technology, vol. 172, pp. 1-6, 2003.
66. D. Pasquarielo, "Surface energy as a function of self-bias voltage in oxygen plasma wafer bonding," Sensors and Actuators, vol. 82, pp. 239-244, 2000.
67. P. Amirfeiz, A. Weinert, S. Bengtsson, "Plasma assisted room temperature bonding for MST," Sensors and Actuators A, vol. 92, pp. 214-222, 2001.
68. P. Enoksson, F. Niklaus, P. Griss, E. Kalvesten, G. Stemme, "Low-temperature wafer-level transfer bonding," Journal of microelectromechanical systems, vol. 10, pp. 525-531, 2001.
69. H. Yang, C. T. Pan, S. C. Shen, M. C. Chou, H. P. Chou, "A low temperature wafer bonding technique using patternable materials," Journal of Micromechanics and Microengineering, vol. 12, pp. 611-615, 2002.
70. M. Simor, H. Krump, I. Hudec, M. Jasso, A. S. Luyt, "Adhesion strength study between plasma treated polyester fibres and a rubber matrix," Applied Surface Science, vol. 240, pp. 268-274, 2005.
71. J. Park, J. Y. Jeong, I. Henins, S. E. Babayan, V. J. Tu, G. S. Selwyn, G. Ding, R. F. Hicks, "Reaction chemistry in the afterglow of an oxygen-helium , atmospheric pressure plasma," Journal of physics chemistry A, vol. 104, pp. 8027-8032, 2000.
72 S. C. Yan, R. Y. Tsay, S. Y. Lin, "A video-enhanced plate method for simultaneous measurements of surface tension and contact angle," Review of Scientific Instruments, vol. 66, pp. 5065-5069, 1995.
73. H. C. Chang, S. Y. Lin, L. W. Lin, P. Y. Huang, "Measurement of dynamic/advancing/receding contact angle by video-enhanced sessile drop tensiometry," Review of Scientific Instruments, vol. 67, pp. 2852-2858, 1996.
74. Y. L. Hsu, Y. C. Chung, C. P. Jen, M. C. Lu, Y. C. Lin, "Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber," Lab on a Chip, vol. 4, pp.70-77, 2004.
75. E. Unveren, U. Oran, T. Wirth, W. E. S. Unger, "Poly-dimethyl-siloxane(PDMS) contamination of polystyrene(PS) oligomers samples: a comparison of time-of-flight static secondary ion mass spectrometry(TOF-SSIMS) and X-ray photoelectron spectroscopy (XPS) results," Applied surface science, vol. 227, pp. 318-324, 2004.
76. R. N. S. Sodhi, J. Lukas, M. V. Sefton, "An XPS study of the surface reorientation of statistical methacrylate copolymers," Journal of colloid and interface science, vol. 174, pp. 421-427, 1995.
77. S. Kodama, H. Habaki, H. Sekiguchi, J. Kawasaki "Surface modification of adsorbents by dielectric barrier discharge," Thin Solid Films, vol. 407, pp. 151-155, 2002.
78. M. Pumera, J. Wang, M. P. Chatrathi, A. Escarpa, R. Konrad, A. Griebel, W. Dorner, H. Lowe,"Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection,"vol. 23, pp. 596-601, 2002.
79. C. H. Lin, C. W. Lan, "The Low-Temperature Bonding Technique for Plastic-Based Microfluidic Chips and its Applications for Micromixers," in Mechanical and Electro-Mechanical Engineering. Kaoshung: NSYSU.
80. R. Ashton, R. S. Kane, "Microfluidic separation of DNA," Current Opinion Biotechnology, vol. 14, pp. 479-504, 2003.
81. R. F. Service, "DNA analysis: Microchip arrays put DNA on the spot," Science, vol. 282, pp. 396-399, 1998.
82. R. S. Ramsey, C. T. Culbertson, J. M. Ramsey, "Electroosmotically in- duced hydraulic pumping on microchips: differential ion transport," Analytical Chemistry, vol. 72, pp. 2285-2291, 2000.
83. K. Cho, Y. S. Shin, S. H. Lim, S. Chung, S. J. Park, C. Chung, D. C. Han, J. K.Hhang, "PDMS-based micro PCR chip with parylene coating," Journal of Micromechanics and Microengineering, vol. 13, pp. 768-774, 2003.
84. E. Buks, M. L. Roukes, "Electrically tunable collectie response in a coupled micromechanical array," Journal of Microelectro-mechanical System, vol. 11, pp.801-808, 2002.
85. A. V. Lemoff, A. P. Lee, "An AC magnetohydrodynamic micropump," Sensors and Actuators B, vol. 63, pp. 178-185, 2000.
86. L. M. Fu, C. H. Lin, Y. S. Chien, "Rapid microfluidic T-form mixer utilizing switching electroosmotic flow," Analytical Chemistry, vol. 76, 2004.
87. Y. K. Lee, X. Niu, "Efficient spatial-temporal chaotic mixing in microchannels," Journal of Micromechanics and Microengineering, vol. 13, pp. 454-462, 2003.
88. J. D. Williams, R. Yang, W. Wang, "A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets," Journal of Micromechanics and Microengineering, vol. 14, pp. 1345-1351, 2004.
89. H. Goto, Z. Yang, M. Matsumoto, R. Maeda, "Active micromixer for microfluidic systems using lead- zirconate-titanate (PZT)-generated ultrasonic vibration," Electrophoresis, vol. 21, pp. 116-119, 2000.
90. F. G. Bessoth, "Microstructure for efficient continuous flow mixing," Analytical Communications, vol. 36, pp. 213-215, 1999.
91. M. A. Stremler, R. H. Liu, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, D. J. Beebe, "Passive mixing in a three-dimensional serpentine micro- channel," Journal of Microelectro- mechanical System, vol. 9, pp. 190-197, 2000.
92. J. K. Kim, S. J. Park, J. Park, S. Hung, C. Chung, J. K. Chang, "Rapid three-dimensional passive rotation micromixer using the breakup process," Journal of Micromechanics and Microengineering, vol. 14, pp. 6-14, 2004.
93. D. Ross, T. J. Johnson, L. E. Locascio, "Rapid microfluidic mixing," Analytical Chemistry, vol. 74, pp. 45-51, 2002.
94. S. K. W. Dertinger, A. D. Stroock, A. Ajdari, l. Mezic, H. A. Stone, G. M. Whitesides, "Chaotic mixer for microchannels," Science, vol. 295, pp. 647-651, 2002.
95. F. E. Regnier, B. J. Burke, "Stopped-flow enzyme assays on a chip using a microfabricated mixer," Analytical Chemistry, vol. 75, pp.1786-1791, 2003.
96. I. H. Lee, D. S. Kim, T. H. Kim, D. W. Cho, "A barrier embedded kinics micromixer," Journal of Micromechanics and Microengineering, vol. 14, pp. 1294-1301, 2004.
97. L. M. Fu, C. H. Lin, "Numerical analysis and experimental estimation of a low-leakage injection technique for capillary electrophoresis," Analytical Chemistry, vol. 75, pp. 5790-5796, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.238.76
論文開放下載的時間是 校外不公開

Your IP address is 3.139.238.76
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code