Responsive image
博碩士論文 etd-0720115-145532 詳細資訊
Title page for etd-0720115-145532
論文名稱
Title
驗證造成台灣周遭生態島之皺紋陸寄居蟹(Coenobita rugosus)體型差異機制
Testing of Mechanisms Causing Size Differences of the Land Hermit Crab, Coenobita rugosus, Among Eco-Islands Around Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-10
繳交日期
Date of Submission
2015-08-24
關鍵字
Keywords
體型差異、海草碎屑、皺紋陸寄居蟹、東沙島
Coenobita rugosus, Difference of body size, Dongsha Island, Seagrass debris
統計
Statistics
本論文已被瀏覽 5748 次,被下載 692
The thesis/dissertation has been browsed 5748 times, has been downloaded 692 times.
中文摘要
生物體型大小常被外在生態因素所影響,因此要瞭解一個地區的生態,生物體型是一個重要的指標。本研究發現在東沙島之皺紋陸寄居蟹 (Coenobita rugosus) 體型遠大於其它島嶼或生態島的同種類寄居蟹。為了要瞭解造成體型差異的機制為何,本研究驗證了幾個假說 : 1.殼資源是否足夠 2. 寄生蟲影響3.種內或種間競爭 4.天敵因素 5. 食物充裕與否。前四個假說的初步測試皆沒有發現支持的證據,例如東沙的殼資源狀況較其他地方來得差、不論東沙或西子灣僅發現少數個體有體外寄生蟲、各個調查地區的密度變異度均高、年齡群數均同 (在東沙並不是因為年齡大而造成體型大)。由2013與2014東沙島與西子灣之皺紋陸寄居蟹年齡群結果顯示,東沙島在第2013及2014兩年之第二年齡群的皺紋陸寄居蟹成長速率顯著較快於西子灣,因此支持成長速率較快造成東沙島與其它生態島同種類之體型差異。而初步研究發現由肥滿度指標 (Condition index) 支持東沙島皺紋顯著好於其它生態島,間接支持東沙島皺紋陸寄居蟹吃得好的假說。另外在東沙島夏季時發現大量皺紋陸寄居蟹於海草碎屑堆上覓食,相較於其他調查區域並沒有大量海草供食,因此推測是由東沙島提供充足的海草供皺紋陸寄居蟹食用。由食物喜好實驗中,東沙島皺紋陸寄居蟹顯著喜好海草碎屑高於濱海落葉;西子灣皺紋陸寄居蟹對海草碎屑及濱海落葉喜好度並無顯著差異。而餵食實驗顯示東沙島皺紋陸寄居蟹在餵食海草組之成長率顯著快於餵食海濱落葉組;西子灣皺紋陸寄居蟹於餵食海草組及濱海落葉組中,成長率沒有顯著差異。由本實驗支持造成皺紋陸寄居蟹體型差異的原因在於東沙島充沛的海草碎屑使得當地皺紋陸寄居蟹成長較快。
Abstract
The body size is usually influenced by ecological factors. Reversely, we could study ecology from body sizes of organisms. In this study, we found that the body size of land hermit crabs (Coenobita rugosus) at Dongsha Island, South China Sea was bigger than that in other (eco) islands. To understand the underlying mechanisms, we tested a few hypotheses : (1) shell resource (2) parasites impact (3) competition (4) predation (5) food. We did not find supporting evidence for the first four hypotheses, as shells used by Dongsha were in poorer condition than elsewhere, very few individuals had external parasites at Dongsha or Siziwan, densities were highly variable within sites, and cohort numbers are the same between sites, i.e., Dongsha crabs were not larger due to older ages. The size differences between age 1 and 2, an index of growth rates, in both 2013 and 2014, was greater at Dongsha Island than at Siziwan. The condition index of C. rugosus is also significantly greater at Dongsha Isalnd than at Siziwan. These phenomena suggests that crabs at Dongsha may eat better. There are large amount of seagrass debris accumulated at the shore of Dongsha Island but none at Siziwan, thus we evaluated the possible role of seagrasses as food item of C. rugosus at both sites. Crabs at Dongsha prefer seagrasses to dicot leaves, but no such difference was found in crabs from Siziwan where the latter was the main food source. In feeding experiment, growth increment was faster in crabs from Dongsha feeding on seagrasss than dicot leaves; no such difference was found in Siziwan crabs. The above evidence is compatible with faster growth hypothesis that contributes to the larger size of Dongsha crabs, and abundance of seagrass debris must have played a significant role at Dongsha shores.
目次 Table of Contents
目 錄
論文審定書.................................................................................................i
誌謝............................................................................................................ii
中文摘要...................................................................................................iii
英文摘要...................................................................................................iv
前言………………………………………..……………………..............1
材料與方法................................................................................................5
一、調查..................................................................................................5
二、年齡群分析及天敵假說驗證................................................................6
三、殼資源狀況分析.................................................................................6
四、食物豐度分析....................................................................................7
4.1狀況指標測試..............................................................................7
4.2食物喜好實驗..............................................................................7
4.3餵食海草與濱海落葉實驗.............................................................8
五、競爭與否分析....................................................................................9
六、寄生蟲檢視.......................................................................................9
結果..........................................................................................................10
討論..........................................................................................................15
結論..........................................................................................................18
參考文獻……………………………………………………….…….....19
參考文獻 References
Reference
方新疇,1997,魚群評估工具 (Fisat) 中魚群參數之推算方法介紹。水產科學用電腦軟體研習會, 10-15頁。高雄。
李政璋、邱郁文,2013,半島陸蟹。國立海洋生物博物館,95頁。屏東。
有馬啟人,2014,ヤドカリ ひと目で特徴がわかる図解付き。誠文堂新社,223頁。日本。
林幸助,2010,東沙海域大型藻類生物量與海草物候、生產力調查。海洋國家公園管理處,135頁。高雄。
施習德,2012,東沙島潮間帶至陸域蟹類與寄居蟹調查。海洋國家公園管理處,110頁。高雄。
游祥平、符菊永,1991,台灣的寄居蟹。南天書局,78頁。台北。
劉烘昌,2014,陸蟹的路殺:問題與對策。台灣生態 43:64-72。
Abrams, P. (1978). Shell selection and utilization in a terrestrial hermit crab, Coenobita compressus (H. Milne Edwards). Oecologia 34(2): 239-253.
Alexander, H. (1979). A preliminary assessment of the role of the terrestrial decapod crustaceans in the Aldabran ecosystem. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 286(1011): 241-246.
Bertness, M. D. (1981). The influence of shell-type on hermit crab growth rate and clutch size (Decapoda, Anomura). Crustaceana 62(2): 197-205.
Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small?. Quarterly Review of Biology, 385-407
Bright, D. B., & Hogue, C. L. (1972). A synopsis of the burrowing land crabs of the world and list of their arthropod symbionts and burrow associates: Natural History Museum Los Angeles.
Burggren, W. W., & McMahon, B. R. (1988). Biology of the land crabs: Cambridge University Press.
Childress, J. R. (1972). Behavioral ecology and fitness theory in a tropical hermit crab. Ecology 53(5): 960-964.
Cohen, J. E., Pimm, S. L., Yodzis, P., & Saldaña, J. (1993). Body Sizes of Animal Predators and Animal Prey in Food Webs. Journal of Animal Ecology 62(1): 67-78.
Drew, M., Smith, M. J., & Hansson, B. (2013). Factors influencing growth of giant terrestrial robber crab Birgus latro (Anomura: Coenobitidae) on Christmas Island. Aquatic Biology 19: 129-141.
Dowds, B. M., & Elwood, R. W. (1983). Shell wars: assessment strategies and the timing of decisions in hermit crab shell fights. Behaviour 85(1): 1-24.
Duffy, J. (2006). Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series 311: 233-250.
Edquist, S. K., & Rotjan, R. D. (2012). Testing vacancy chain predictions in Pagurus longicarpus hermit crabs: Does ecological gain and behavioral motivation match environmental context? Journal of Experimental Marine Biology and Ecology, 430-431, 78-86.
Elwood, R. W. (1995). Motivational change during resource assessment by hermit crabs. Journal of Experimental Marine Biology and Ecology 193(1): 41-55.
Fotheringham, N. (1976). Effects of shell stress on the growth of hermit crabs. Journal of Experimental Marine Biology and Ecology 23(3): 299-305.
Gause, G. (1932). Ecology of populations. The Quarterly Review of Biology 7(1) : 27-46.
Grinnell, J. (1917). The Niche-Relationships of the California Thrasher. The Auk, 34(4):427-433.
Hazlett, B. A. (1970). The effect of shell size and weight on the agonistic behavior of a hermit crab. Zeitschrift für Tierpsychologie 27(3): 369-374.
Hazlett, B. A. (1978). Shell exchanges in hermit crabs: Aggression, negotiation, or both? Animal Behaviour 26: 1278-1279.
Hazlett, B. A. (1981). The Behavioral ecology of hermit crabs. Annual Review of Ecology and Systematics 12: 1-22.
Imafuku, M., & Ikeda, H. (1990). Sound production in the land hermit crab Coenobita purpureus Stimpson, 1858 (Decapoda, Coenobitidae). Crustaceana 58(2): 168-174.
Jakob, E. M., Marshall, S. D., & Uetz, G. W. (1996). Estimating fitness: a comparison of body condition indices. Oikos 77: 61-67.
Kilada, R., Sainte-Marie, B., Rochette, R., Davis, N., Vanier, C., Campana, S., & Gillanders, B. (2012). Direct determination of age in shrimps, crabs, and lobsters. Canadian Journal of Fisheries and Aquatic Sciences, 69(11):1728-1733.
Kuhlmann, M. L. (1992). Behavioral avoidance of predation in an intertidal hermit crab. Journal of Experimental Marine Biology and Ecology 157(2): 143-158.
Latham, A., & Poulin, R. (2002). Field evidence of the impact of two acanthocephalan parasites on the mortality of three species of New Zealand shore crabs (Brachyura). Marine Biology 141(6): 1131-1139.
Lewis, S. M., & Rotjan, R. D. (2009). Vacancy chains provide aggregate Benefits to Coenobita clypeatus hermit crabs. Ethology 115(4):356-365.
Linton, S. M., & Greenaway, P. (2007). A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. Journal of Comparative Physiology B 177(3): 269-286.
Mau, M., Südekum, K. H., Johann, A., Sliwa, A., & Kaiser, T. M. (2009). Saliva of the graminivorous Theropithecus gelada lacks proline‐rich proteins and tannin‐binding capacity. American journal of primatology 71(8):663-669.
McClintock, T. S. (1985). Effects of shell condition and size upon the shell choice behavior of a hermit crab. Journal of Experimental Marine Biology and Ecology 88(3):271-285.
McDermott, J. J., Williams, J. D., & Boyko, C. B. (2010). The unwanted guests of hermits: A global review of the diversity and natural history of hermit crab parasites. Journal of Experimental Marine Biology and Ecology, 394(1-2): 2-44.
McLaughlin, P. A., Rahayu, D. L., Komai, T., & Chan, T.-Y. (2007). A catalog of the hermit crabs (Paguroidea) of Taiwan: National Taiwan Ocean University.
Peters, R. H. (1986). The ecological implications of body size (Vol. 2): Cambridge University Press.
Roche, D. G., Strong, L. E., & Binning, S. A. (2013). Prevalence of the parasitic cymothoid isopod Anilocra nemipteri on its fish host at Lizard Island, Great Barrier Reef. Australian Journal of Zoology 60(5): 330-333.
Scharf, F. S., Juanes, F., & Rountree, R. A. (2000). Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Marine Ecology Progress Series, 208: 229-248.
Shih, H.-T. (2012). Warrior - The Seashore Crabs of Dongsha Island. Marine National Park, Kaohsiung, Taiwan.
Shoshani, J., & Eisenberg, J. F. (1982). Elephas maximus. Mammalian species, 1-8.
Small, M. P., & Thacker, R. W. (1994). Land hermit crabs use odors of dead conspecifics to locate shells. Journal of Experimental Marine Biology and Ecology 182(2):169-182.
Thacker, R. W. (1996). Food choices of land hermit crabs (Coenobita compressus H. Milne Edwards) depend on past experience. Journal of Experimental Marine BiologyandEcology 199(2):179-191.
Warren, P., & Lawton, J. (1987). Invertebrate predator-prey body size relationships: an explanation for upper triangular food webs and patterns in food web structure? Oecologia, 74(2): 231-235.
Wolcott, D., & Wolcott, T. (1987). Nitrogen limitation in the herbivorous land crab Cardisoma guanhumi. Physiological zoology 60: 262-268.
Woodward, G., & Hildrew, A. G. (2002). Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology 71(6), 1063-1074.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code