Responsive image
博碩士論文 etd-0724115-190611 詳細資訊
Title page for etd-0724115-190611
論文名稱
Title
利用真空紫外光光電子光譜探測奈米級水溶液氣膠及其在生物化學與環境科學上之應用
VUV Photoelectron Spectroscopy of Nano-scaled Aqueous Aerosols and Its Implications in the Biological Chemistry and Environmental Science
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-14
繳交日期
Date of Submission
2015-09-02
關鍵字
Keywords
氣膠、真空紫外光光電子光譜儀、榖胱甘肽、環境化學、PM2.5、硫酸鹽類、硝酸鹽類、榖胺酸、巰基氧化反應、抗氧化劑、半胱胺酸、甘胺酸、游離能
PM2.5, Environmental chemistry, Thiol oxidation, Antioxidant, Aerosol VUV photoelectron spectroscopy, Sulfate, Ionization energy, Nitrate, Glutathione
統計
Statistics
本論文已被瀏覽 5685 次,被下載 467
The thesis/dissertation has been browsed 5685 times, has been downloaded 467 times.
中文摘要
氣膠 (Aerosol)乃懸浮微粒之統稱。氣膠的尺寸範圍通常介於奈米至微米量級之間,可以以不同的狀態,如極細微之固體或是液滴型態存在由於氣膠的成分、外形以及結構對其物理、化學以及光學活性有直接的影響,因此為了瞭解氣膠如何在各相關領域如環境化學與生物化學發揮其重要性及影響力,研究氣膠的基礎特性乃一非常重要之課題。
為了深入了解奈米氣膠粒子其原子及分子層面的化學性質,本論文利用最近建置的氣膠真空紫外光光電子光譜儀(VUV Aerosol Photoelectron Spectroscopy)作為主要探測工具,並使用同步輻射產生之紫外光作為游離光源來探測物質在水溶液氣膠狀態下的價殼層電子能級結構及其隨不同環境條件影響所發生的變化。
本論文的主要探討水溶液氣膠探討其在生物化學及環境科學兩大領域的應用。在生物化學的應用部分,本論文研究了在生物體系中扮演重要角色的榖胺酸(Glutamic Acid)以及一在人體中扮演主要抗氧化劑的三胜肽,穀胱甘肽(Glutathione, GSH)。榖胱甘肽為生物體中重要的抗氧化劑,其功能為優先與各種內外源氧化劑發生氧化反應,藉此防止功能性蛋白質與在組織細胞中的酵素受到氧化損害。由於榖胱甘肽為三種胺基酸所組成,其生物化學活性主要被認為來自高反應性的官能基硫醇基(-SH)上的貢獻,而氧化還原反應涉及到分子之間電子轉移的過程。儘管如此,吾人對於榖胱甘肽的電子結構尚未釐清。因此,為了深究其優越的抗氧化功能,我們深入個別探討榖胱甘肽與其組成的三種胺基酸在不同酸鹼值的水溶液環境中,電子在分子結構中的發生游離位置與游離能變化,並從系統性的光譜分析中,探討榖胱甘肽在生物體內具有強抗氧化力的原因。除了半胱胺酸作為主要活性位點,我們認為位於榖胱甘肽兩旁的胺基酸:甘胺酸與穀胺酸對於榖胱甘肽成為比其他多肽或蛋白質更有效的還原劑扮演關鍵且無可取代的角色。
本論文也針對氣膠在環境科學上之應用進行探討。PM2.5為氣動粒徑(aerodynamic diameter) 小於或等於2.5微米的粒子,為造成許多健康危害,如呼吸道肺部及心血管疾病的來源。PM2.5主要化學成分中包含了由硫氧化物(SOx)及氮氧化物(NOx)所衍生之硫酸鹽類及硝酸鹽類,其被視為高光化學性之氧化物,在環境中受到日光照射後易發生自由基反應,進而影響生物體。本工作利用氣膠紫外光光電子光譜探測儀,探討了數個在環境中重要的無機鹽類,包括硫酸鹽類以及硝酸鹽類的水溶液氣膠,藉由了解其電子結構,討論無機鹽類對環境可能造成的影響。
Abstract
“Aerosols” are broadly referred to ultrafine particulate suspension. The crucial roles of aerosols have been increasingly recognized in a variety of important research fields, including the atmospheric chemistry, environment chemistry and interstellar chemistry. Its implications in the biological and biomedical sciences have also been actively explored. In order to obtain the valence electronic structural information of aerosols, a novel VUV photoelectron spectroscopy apparatus has been recently built, using the VUV synchrotron-based radiation as the ionization source.
In this thesis, the valence electronic structures of several species that are of particular significance in the biological science and in the environmental chemistry have been systematically investigated, including the biologically important glutamic acid (Glu), glutathione (GSH) tripeptide, and the environmentally important inorganic aerosols. Glutamic acid is one of the precursors of GSH, and in the mean while, a crucial amino acid governing the neural activation and brain functionality. The valence electronic structure of Glu at varying pH conditions are investigated for the first time in the aqueous aerosol phase and are presented in Chapter 3.
On the other hand, glutathione (L-γ-glutamyl-cysteinyl-glycine, GSH) is one of the most powerful antioxidant in nature. By preferentially reacting with various endogenous and exogenous oxidants, it readily scavenges harmful free radicals and reactive species, thereby preventing functional proteins and enzymes in tissue cells from oxidative damages. Despite its remarkable biological significance, however, the electronic structure of GSH remains unavailable. To gain insights into the intrinsic origin underlying its superior antioxidant capacity, the valence electronic structure of GSH have been studied for the first time in the aqueous aerosol form and presented in Chapter 4. The VUV photoelectron spectra of GSH and its constituting amino acids are obtained at several representative pH conditions, reflecting the changing molecular characters of the dominating chemical species. Upon systematic spectroscopic analysis, the profound molecular origin responsible for the powerful antioxidant ability of this super antioxidant is revealed. Though the thiol functional group of GSH is the key player involved in most redox reactions it undergoes, the functional roles of the other two composite amino acids of GSH, Glu and Gly in making GSH a superior antioxidant are discussed.
In addition to the implication in the biological chemistry, the implication of aerosols in the environment science has also been addessed in this thesis, as presented in Chapter 5. PM2.5 particles, which are referred to particulate matters with an aerodynamic diameter smaller than 2.5 micrometers, are known to cause respiratory and cardiovascular diseases. The main chemical compositions of PM2.5 pollutions include sulfates, nitrates, hydrocarbons, carbon monoxide and heavy metals. They are considered as optical active and high oxidizing species. These hazardous aerosols in the environment, such as sulfate, nitrate, and ammonium may undergo photochemical reactions to form radicals and influence living organisms. In Chapter 5, the valence electronic structure of several critical inorganic salts in environment, including nitrate and sulfate are investigated. By doing so, we attempt to better understand the possible impacts of the inorganic aerosols towards the environment as well as the homeostasis of human health.
目次 Table of Contents
Chapter 1 Introduction 1
1.1. A brief overview of aerosol science 1
1.1.1. Fundamental characteristics of aerosols 1
1.1.2. Aerosols in the biological science 4
1.1.3. Aerosols in the biomedical chemistry 6
1.1.4. Aerosols in the atmospheric and environment chemistry 7
1.2. Issues of interest and scope of this thesis 10
Chapter 2 Experiment 12
2.1. Principle of photoelectron spectroscopy (UPS) 12
2.1.1. The photoelectric effect 12
2.1.2. Adiabatic and vertical ionization energy 14
2.2. Aerosol VUV photoelectron spectroscopy 16
2.3. Aerosol generation and size distribution 21
2.4. Aerosol beam formation via aerodynamic focusing 31
2.4.1. The components of AADL system 32
2.4.2. Functions of AADL system 33
2.4.3. Simulation and Optimization the AADL design 34
2.4.4. Characterization of AADL system 37
2.5. Ionization light sources of synchrotron radiation 39
2.5.1. Brief introduction of VUV Synchrotron radiation 40
2.5.2. Application and Advantage of synchrotron radiation 43
2.6. Detector of VUV photoelectron spectroscopy 43
2.7. Comparison between the aerosol VUV photoelectron spectroscopy and the liquid microjet photoelectron spectroscopy 46
2.7.1. Sample generation/introduction mechanism and size regime 46
2.7.2. The charging issue 48
2.7.3. Targets of interest and implications 50
Chapter 3 VUV photoelectron spectroscopy of glutamic acid aqueous aerosols 52
3.1. Introduction 52
3.1.1. The biological significance of glutamic acid 53
3.1.2. Previous studies regarding the electronic properties of glutamic acid 55
3.2. VUV photoelectron spectroscopy of glutamic acid at varying pH conditions 58
3.2.1. pH dependence of the binding energy of Glu nO and Glu nO’ 65
3.5. Summary 67
Chapter 4 Microscopic Insights into the Antioxidant Capacity of the Master Antioxidant, Glutathione 68
4.1. Introduction 68
4.2. Microscopic protonated/deprotonated forms for Glutathione depend on different pH value 73
4.3. VUV photoelectron spectra of GSH aqueous aerosols at varying pH conditions 75
4.3.1. Functional role of Cys in GSH 88
4.3.2. Functional role of Glu in GSH 91
4.3.3. Functional role of Gly in GSH 94
4.3.4. The golden trio combination makes GSH a super antioxidant 95
4.4. Summary 97
Chapter 5 VUV Photoelectron Spectroscopy of Inorganic Aerosols of Environmental Significance 99
5.1 Introduction 99
5.1.1. Significance of inorganic salts in the environment 99
5.1.2. Microscopic properties of sulfates and nitrites from previous studies 102
5.2. VUV photoelectron spectroscopy of nitrate and nitrite 104
5.2.1. VUV photoelectron spectral features of nitrates 105
5.2.2. VUV photoelectron spectral features of nitrates 108
5.3. VUV photoelectron spectroscopy of sulfates 110
5.4. Summary 114
Chapter 6 Conclusions 115
參考文獻 References
1. Niven, R. W., Delivery of Biotherapeutics by Inhalation Aerosol. Crit. Rev. Ther. Drug. 1995, 12 (2-3), 151-231.
2. Reed, C. E.; Offord, K. P.; Nelson, H. S.; Li, J. T.; Tinkelman, D. G.; Amer Acad Allergy Asthma Immunology, B., Aerosol Beclomethasone Dipropionate Spray Compared with Theophylline as Primary Treatment for Chronic Mild-to-Moderate Asthma. J. Allergy. Clin. Immun. 1998, 101 (1), 14-23.
3. Miller, W. F., Aerosol Therapy in Acute and Chronic Respiratory Disease. Arch. Intern. Med. 1973, 131 (1), 148-55.
4. Freedman, T., Medihaler therapy for bronchial asthma; a new type of aerosol therapy. Postgrad. Med. 1956, 20 (6), 667-73.
5. Rubin, B. K.; Fink, J. B., Optimizing Aerosol Delivery by Pressurized Metered-Dose Inhalers. Respir. Care. 2005, 50 (9), 1191-200.
6. Buseck, P. R.; Schwartz, S. E., "Tropospheric Aerosols," in Treatise on Geochemistry. Elsevier: San Diego, Calif, USA, 2003; pp 91-142.
7. Forster, P.; Ramaswamy, V.; Artaxo, P.; al., e. "Changes in atmospheric constituents and in radiative forcing," in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge; Cambridge University Press: NY, USA, 2007.
8. Solomon, S., Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press: 2007.
9. Watson, J. G., Visibility: Science and Regulation. J. Air. Waste. Manage. Assoc. 2002, 52 (6), 628-713.
10. Liu, X.; Zhang, Y.; Jung, J.; Gu, J.; Li, Y.; Guo, S.; Chang, S.-Y.; Yue, D.; Lin, P.; Kim, Y. J.; Hu, M.; Zeng, L.; Zhu, T., Research on the Hygroscopic Properties of Aerosols by Measurement and Modeling During CAREBeijing-2006. J. Geophys. Res. 2009, 114 (D2).
11. Cheung, H. C.; Wang, T.; Baumann, K.; Guo, H., Influence of Regional Pollution Outflow on the Concentrations of Fine Particulate Matter and Visibility in the Coastal Area of Southern China. Atmos. Environ. 2005, 39 (34), 6463-6474.
12. Yuan, C.-S.; Lee, C.-G.; Liu, S.-H.; Chang, J.-c.; Yuan, C.; Yang, H.-Y., Correlation of Atmospheric Visibility with Chemical Composition of Kaohsiung Aerosols. Atmos. Res. 2006, 82 (3-4), 663-679.
13. Liu, X.; Zhang, Y.; Cheng, Y.; Hu, M.; Han, T., Aerosol Hygroscopicity and Its Impact on Atmospheric Visibility and Radiative Forcing in Guangzhou During the 2006 PRIDE-PRD Campaign. Atmos. Environ. 2012, 60, 59-67.
14. Dou, J.; Lin, P.; Kuang, B.-Y.; Yu, J. Z., Reactive Oxygen Species Production Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by Pyridine, Imidazole, and Their Derivatives. Environ. Sci. Technol. 2015, 49 (11), 6457-6465.
15. Kleinman, M. T.; Phalen, R. F.; Mautz, W. J.; Mannix, R. C.; McClure, T. R.; Crocker, T. T., Health-Effects of Acid Aerosols Formed by Atmospheric Mixtures. Environ. Health Perspect. 1989, 79, 137-145.
16. Last, J. A., Global Atmospheric Change - Potential Health-Effects of Acid Aerosol and Oxidant Gas-Mixtures. Environ. Health Perspect. 1991, 96, 151-157.
17. Siegbahn, H.; Siegbahn, K., ESCA Applied to Liquids. J. Electron. Spectrosc. Relat. Phenom. 1973, 2 (3), 319-325.
18. Ottosson, N.; Borve, K. J.; Spangberg, D.; Bergersen, H.; Saethre, L. J.; Faubel, M.; Pokapanich, W.; Ohrwall, G.; Bjorneholm, E.; Winter, B., On the Origins of Core-Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycine(aq). J. Am. Chem. Soc. 2011, 133 (9), 3120-3130.
19. Winter, B.; Faubel, M.; Hertel, I. V.; Pettenkofer, C.; Bradforth, S. E.; Jagoda-Cwiklik, B.; Cwiklik, L.; Jungwirth, P., Electron binding energies of hydrated H3O+ and OH-: Photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations. J. Am. Chem. Soc. 2006, 128 (12), 3864-3865.
20. Nolting, D.; Aziz, E. F.; Ottosson, N.; Faubel, M.; Hertel, I. V.; Winter, B., pH-Induced protonation of lysine in aqueous solution causes chemical shifts in X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 2007, 129 (45), 14068-14073.
21. Ottosson, N.; Odelius, M.; Spangberg, D.; Pokapanich, W.; Svanqvist, M.; Ohrwall, G.; Winter, B.; Bjorneholm, O., Cations Strongly Reduce Electron-Hopping Rates in Aqueous Solutions. J. Am. Chem. Soc. 2011, 133 (34), 13489-13495.
22. Winter, B.; Faubel, M., Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106 (4), 1176-1211.
23. Seidel, R.; Thürmer, S.; Winter, B., Photoelectron Spectroscopy Meets Aqueous Solution: Studies from a Vacuum Liquid Microjet. J. Phys. Chem. Lett. 2011, 2 (6), 633-641.
24. Mysak, E. R.; Starr, D. E.; Wilson, K. R.; Bluhm, H., Note: A combined aerodynamic lens/ambient pressure x-ray photoelectron spectroscopy experiment for the on-stream investigation of aerosol surfaces. Rev. Sci. Instrum. 2010, 81 (1), 016106-3.
25. Starr, D. E.; Wong, E. K.; Worsnop, D. R.; Wilson, K. R.; Bluhm, H., A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces. Phys. Chem. Chem. Phys. 2008, 10 (21), 3093-3098.
26. Knutson, E. O.; Whitby, K. T., Accurate measurement of aerosol electric mobility moments. J. Aerosol. Sci. 1975, 6 (6), 453-460.
27. Wilson, K. R.; Rude, B. S.; Smith, J.; Cappa, C.; Co, D. T.; Schaller, R. D.; Larsson, M.; Catalano, T.; Saykally, R. J., Investigation of volatile liquid surfaces by synchrotron x-ray spectroscopy of liquid microjets. Rev. Sci. Instrum. 2004, 75 (3), 725-736.
28. Smith, J. D.; Cappa, C. D.; Drisdell, W. S.; Cohen, R. C.; Saykally, R. J., Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets. J. Am. Chem. Soc. 2006, 128 (39), 12892-12898.
29. Murphy, W. K.; Sears, G. W., Production of particulate beams. J. Appl. Phys. 1964, 35 (6), 1986-&.
30. Allen, J.; Gould, R. K., Mass-spectrometric analyzer for individual aerosol-particles. Rev. Sci. Inst. 1981, 52 (6), 804-809.
31. Hall, T. D.; Beeman, W. W., Secondary-electron emission from beams of polystyrene latex spheres. J. Appl. Phys. 1976, 47 (12), 5222-5225.
32. Seapan, M.; Selman, D.; Seale, F.; Siebers, G.; Wissler, E. H., Aerosol characterization using molecular-beam techniques. J. Coll. Int. Sci. 1982, 87 (1), 154-166.
33. Sinha, M. P.; Friedlander, S. K., Mass-distribution of chemical-species in a polydisperse aerosol - measurement of sodium-chloride in particles by mass-spectrometry. J. Coll. Int. Sci. 1986, 112 (2), 573-582.
34. Kantrowitz, A.; Grey, J., A High Intensity Source for the Molecular Beam. Part I. Theoretical. Rev. Sci. Inst. 1951, 22 (5), 328-332.
35. Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H., Generating particle beams of controlled dimensions and divergence .2. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol. Sci. Technol. 1995, 22 (3), 314-324.
36. Jayne, J. T.; Leard, D. C.; Zhang, X. F.; Davidovits, P.; Smith, K. A.; Kolb, C. E.; Worsnop, D. R., Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol. Sci. Technol. 2000, 33 (1-2), 49-70.
37. Northway, M. J.; Jayne, J. T.; Toohey, D. W.; Canagaratna, M. R.; Trimborn, A.; Akiyama, K. I.; Shimono, A.; Jimenez, J. L.; DeCarlo, P. F.; Wilson, K. R.; Worsnop, D. R., Demonstration of a VUV lamp photoionization source for improved organic speciation in an aerosol mass spectrometer. Aerosol. Sci. Technol. 2007, 41 (9), 828-839.
38. Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.; Allan, J. D.; Alfarra, M. R.; Zhang, Q.; Onasch, T. B.; Drewnick, F.; Coe, H.; Middlebrook, A.; Delia, A.; Williams, L. R.; Trimborn, A. M.; Northway, M. J.; DeCarlo, P. F.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R., Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass. Spectrom. Rev. 2007, 26 (2), 185-222.
39. Gao, S.; Zhang, Y.; Meng, J.; Shu, J., Online investigations on ozonation products of pyrene and benz a anthracene particles with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer. Atmos. Environ. 2009, 43 (21), 3319-3325.
40. Shu, J.; Gao, S.; Li, Y., A VUV photoionization aerosol time-of-flight mass spectrometer with a RF-powered VUV lamp for laboratory-based organic aerosol measurements. Aerosol. Sci. Technol. 2008, 42 (2), 110-113.
41. Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H., Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol. Sci. Technol. 1995, 22 (3), 293-313.
42. Wang, X.; McMurry, P. H., Instruction Manual for the Aerodynamic Lens Calculator. Aerosol. Sci. Technol. 2006, 40 (5), 1-10.
43. Wang, X. L.; McMurry, P. H., A design tool for aerodynamic lens systems. Aerosol Sci. Technol. 2006, 40 (5), 320-334.
44. Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H., Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol. Sci. Technol. 1995, 22 (3), 314-324.
45. Zhang, X.; Smith, K. A.; Worsnop, D. R.; Jimenez, J.; Jayne, J. T.; Kolb, C. E., A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle. Aerosol. Sci. Technol. 2002, 36 (5), 617-631.
46. Zhang, X.; Smith, K. A.; Worsnop, D. R.; Jimenez, J. L.; Jayne, J. T.; Kolb, C. E.; Morris, J.; Davidovits, P., Numerical Characterization of Particle Beam Collimation: Part II Integrated Aerodynamic-Lens–Nozzle System. Aerosol. Sci. Technol. 2004, 38 (6), 619-638.
47. Wang, X.; Gidwani, A.; Girshick, S. L.; McMurry, P. H., Aerodynamic Focusing of Nanoparticles: II. Numerical Simulation of Particle Motion Through Aerodynamic Lenses. Aerosol. Sci. Technol. 2005, 39 (7), 624-636.
48. Shu, J. N.; Wilson, K. R.; Ahmed, M.; Leone, S. R., Coupling a versatile aerosol apparatus to a synchrotron: Vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry. Rev. Sci. Instrum. 2006, 77 (4).
49. Yoder, B. L.; West, A. H. C.; Schlappi, B.; Chasovskikh, E.; Signorell, R., A velocity map imaging photoelectron spectrometer for the study of ultrafine aerosols with a table-top VUV laser and Na-doping for particle sizing applied to dimethyl ether condensation. J. Chem. Phys. 2013, 138 (4).
50. Kurahashi, N.; Karashima, S.; Tang, Y.; Horio, T.; Abulimiti, B.; Suzuki, Y.-I.; Ogi, Y.; Oura, M.; Suzuki, T., Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X. J. Chem. Phys. 2014, 140 (17).
51. Preissler, N.; Buchner, F.; Schultz, T.; Lubcke, A., Electrokinetic Charging and Evidence for Charge Evaporation in Liquid Microjets of Aqueous Salt Solution. J. Phys. Chem. B 2013, 117 (8), 2422-2428.
52. O'Reilly, J. P.; Butts, C. P.; I'Anso, I. A.; Shaw, A. M., Interfacial pH at an Isolated Silica−Water Surface. J. Am. Chem. Soc. 2005, 127 (6), 1632-1633.
53. Holstein, W. L.; Hayes, L. J.; Robinson, E. M. C.; Laurence, G. S.; Buntine, M. A., Aspects of Electrokinetic Charging in Liquid Microjets. J. Phys. Chem. B 1999, 103 (15), 3035-3042.
54. Faubel, M.; Steiner, B.; Toennies, J. P., Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 1997, 106 (22), 9013-9031.
55. Winter, B.; Faubel, M., Photoemission from liquid aqueous solutions. Chem. Rev. 2006, 106 (4), 1176-1211.
56. Krebs, H. A., Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem. J. 1935, 29 (8), 1951-1969.
57. Roberts, E.; Frankel, S., γ-aminobutyric acid in brain: its formation from glutamic acid. J. Biol. Chem. 1950, 187, 55-63.
58. Krishnaswamy, P. R.; Meister, A.; Pamiljans, V., Studies on mechanism of glutamine synthesis - evidence for formation of enzyme-bound activated glutamic acid. J. Biol. Chem. 1962, 237 (9), 2932-&.
59. Greengard, P., The Neurobiology of Slow Synaptic Transmission. Science 2001, 294 (5544), 1024-1030.
60. Deng, S. H. M.; Hou, G.-L.; Kong, X.-Y.; Valiev, M.; Wang, X.-B., Examining the Amine Functionalization in Dicarboxylates: Photoelectron Spectroscopy and Theoretical Studies of Aspartate and Glutamate. J. Phys. Chem. A 2014, 118 (28), 5256-5262.
61. Meng, L.; Lin, Z., Comprehensive computational study of gas-phase conformations of neutral, protonated and deprotonated glutamic acids. Comput. Theor. Chem. 2011, 976 (1-3), 42-50.
62. Su, C.-C.; Yu, Y.; Chang, P.-C.; Chen, Y.-W.; Chen, I. Y.; Lee, Y.-Y.; Wang, C. C., VUV Photoelectron Spectroscopy of Cysteine Aqueous Aerosols: A Microscopic View of Its Nucleophilicity at Varying pH Conditions. J. Phys. Chem. Lett. 2015, 6 (5), 817-823.
63. Winter, B.; Weber, R.; Widdra, W.; Dittmar, M.; Faubel, M.; Hertel, I. V., Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 2004, 108 (14), 2625-2632.
64. Nishizawa, K.; Kurahashi, N.; Sekiguchi, K.; Mizuno, T.; Ogi, Y.; Horio, T.; Oura, M.; Kosugi, N.; Suzuki, T., High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys. Chem. Chem. Phys. 2011, 13 (2), 413-417.
65. Kosower, E. M.; Kosower, N. S., Lest I Forget Thee, Glutathione Nature 1969, 224 (5215), 117-120.
66. Feng, S.; Zheng, X.; Wang, D.; Gong, Y.; Wang, Q.; Deng, H., Systematic Analysis of Reactivities and Fragmentation of Glutathione and Its Isomer GluCysGly. J. Phys. Chem. A 2014, 118 (37), 8222-8228.
67. Meyer, A. J.; Hell, R., Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth. Res. 2005, 86 (3), 435-457.
68. Graves, D. B., The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D: Appl. Phys. 2012, 45 (26).
69. Wu, G.; Fang, Y. Z.; Yang, S.; Lupton, J. R.; Turner, N. D., Glutathione metabolism and its implications for health. J. Nutr. 2004, 134 (3), 489-92.
70. Maher, P., The effects of stress and aging on glutathione metabolism. Ageing. Res. Rev. 2005, 4 (2), 288-314.
71. Sastre, J.; Pallardó, F.; Viña, J., Glutathione, oxidative stress and aging. Age. 1996, 19 (4), 129-139.
72. Ceballos-Picot, I.; Witko-Sarsat, V.; Merad-Boudia, M.; Nguyen, A. T.; Thevenin, M.; Jaudon, M. C.; Zingraff, J.; Verger, C.; Jungers, P.; Descamps-Latscha, B., Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free. Radic. Biol. Med. 1996, 21 (6), 845-53.
73. Atkuri, K. R.; Cowan, T. M.; Kwan, T.; Ng, A.; Herzenberg, L. A.; Herzenberg, L. A.; Enns, G. M., Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (10), 3941-3945.
74. Townsend, D. M.; Tew, K. D.; Tapiero, H., The importance of glutathione in human disease. Biomed. Pharmacother. 2003, 57 (3-4), 145-55.
75. Hauser, R. A.; Lyons, K. E.; McClain, T.; Carter, S.; Perlmutter, D., Randomized, double-blind, pilot evaluation of intravenous glutathione in Parkinson's disease. Mov. Disord. 2009, 24 (7), 979-83.
76. Mandal, P. K.; Tripathi, M.; Sugunan, S., Brain oxidative stress: detection and mapping of anti-oxidant marker 'Glutathione' in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 2012, 417 (1), 43-8.
77. Mulier, B.; Rahman, I.; Watchorn, T.; Donaldson, K.; MacNee, W.; Jeffery, P. K., Hydrogen peroxide-induced epithelial injury: the protective role of intracellular nonprotein thiols (NPSH). Eur. Respir. J. 1998, 11 (2), 384-91.
78. Dringen, R., Metabolism and functions of glutathione in brain. Prog. Neurobiol. 2000, 62 (6), 649-71.
79. Yabuki, Y.; Fukunaga, K., Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience 2013, 250, 394-407.
80. Park, E. Y.; Shimura, N.; Konishi, T.; Sauchi, Y.; Wada, S.; Aoi, W.; Nakamura, Y.; Sato, K., Increase in the Protein-Bound Form of Glutathione in Human Blood after the Oral Administration of Glutathione. J. Agric. Food. Chem. 2014, 62 (26), 6183-6189.
81. Hauser, R. A.; Lyons, K. E.; McClain, T.; Carter, S.; Perlmutter, D., Randomized, Double-Blind, Pilot Evaluation of Intravenous Glutathione in Parkinson's Disease. Mov. Disord. 2009, 24 (7), 979-983.
82. Saitoh, T.; Satoh, H.; Nobuhara, M.; Machii, M.; Tanaka, T.; Ohtani, H.; Saotome, M.; Urushida, T.; Katoh, H.; Hayashi, H., Intravenous glutathione prevents renal oxidative stress after coronary angiography more effectively than oral N-acetylcysteine. Heart Vessels 2011, 26 (5), 465-472.
83. Borok, Z.; Buhl, R.; Grimes, G. J.; Bokser, A. D.; Hubbard, R. C.; Holroyd, K. J.; Roum, J. H.; Czerski, D. B.; Cantin, A. M.; Crystal, R. G., EFFECT OF GLUTATHIONE AEROSOL ON OXIDANT-ANTIOXIDANT IMBALANCE IN IDIOPATHIC PULMONARY FIBROSIS. Lancet 1991, 338 (8761), 215-216.
84. Buhl, R.; Vogelmeier, C.; Critenden, M.; Hubbard, R. C.; Hoyt, R. F., Jr.; Wilson, E. M.; Cantin, A. M.; Crystal, R. G., Augmentation of glutathione in the fluid lining the epithelium of the lower respiratory tract by directly administering glutathione aerosol. Proc. Natl. Acad. Sci. U. S. A. 1990, 87 (11), 4063-7.
85. Jia, L.; Bonaventura, C.; Bonaventura, J.; Stamler, J. S., S-nitrosohaemoglobin: A dynamic activity of blood involved in vascular control. Nature 1996, 380 (6571), 221-226.
86. Stamler, J. S.; Jia, L.; Eu, J. P.; McMahon, T. J.; Demchenko, I. T.; Bonaventura, J.; Gernert, K.; Piantadosi, C. A., Blood Flow Regulation by S-Nitrosohemoglobin in the Physiological Oxygen Gradient. Science 1997, 276 (5321), 2034-2037.
87. Schafer, F. Q.; Buettner, G. R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 2001, 30 (11), 1191-1212.
88. Kirlin, W. G.; Cai, J. Y.; Thompson, S. A.; Diaz, D.; Kavanagh, T. J.; Jones, D. P., Glutathione redox potential in response to differentiation and enzyme inducers. Free Radical Biol. Med. 1999, 27 (11-12), 1208-1218.
89. Satoh, T.; Yoshioka, Y., Contribution of reduced and oxidized glutathione to signals detected by magnetic resonance spectroscopy as indicators of local brain redox state. Neurosci. Res. 2006, 55 (1), 34-9.
90. Liu, J.; Sun, Y.-Q.; Huo, Y.; Zhang, H.; Wang, L.; Zhang, P.; Song, D.; Shi, Y.; Guo, W., Simultaneous Fluorescence Sensing of Cys and GSH from Different Emission Channels. J. Am. Chem. Soc. 2014, 136 (2), 574-577.
91. Gutscher, M.; Pauleau, A. L.; Marty, L.; Brach, T.; Wabnitz, G. H.; Samstag, Y.; Meyer, A. J.; Dick, T. P., Real-time imaging of the intracellular glutathione redox potential. Nat. Methods. 2008, 5 (6), 553-9.
92. Rhieu, S. Y.; Urbas, A. A.; Bearden, D. W.; Marino, J. P.; Lippa, K. A.; Reipa, V., Probing the intracellular glutathione redox potential by in-cell NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 2014, 53 (2), 447-50.
93. Kan, H. I.; Chen, I. Y.; Zulfajri, M.; Wang, C. C., Subunit Disassembly Pathway of Human Hemoglobin Revealing the Site-Specific Role of Its Cysteine Residues. J. Phys. Chem. B 2013, 117 (34), 9831-9839.
94. Gould, N.; Doulias, P.-T.; Tenopoulou, M.; Raju, K.; Ischiropoulos, H., Regulation of Protein Function and Signaling by Reversible Cysteine S-Nitrosylation. J. Biol. Chem. 2013, 288 (37), 26473-26479.
95. van Montfort, R. L. M.; Congreve, M.; Tisi, D.; Carr, R.; Jhoti, H., Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 2003, 423 (6941), 773-777.
96. Wang, A.; Lu, S. D.; Mark, D. F., Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Science 1984, 224 (4656), 1431-3.
97. Giese, N. A.; Robbins, K. C.; Aaronson, S. A., The role of individual cysteine residues in the structure and function of the v-sis gene product. Science 1987, 236 (4806), 1315-8.
98. Ruppersberg, J. P.; Stocker, M.; Pongs, O.; Heinemann, S. H.; Frank, R.; Koenen, M., Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 1991, 352 (6337), 711-4.
99. Schweers, O.; Mandelkow, E. M.; Biernat, J.; Mandelkow, E., Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc. Natl. Acad. Sci. U. S. A. 1995, 92 (18), 8463-8467.
100. Lee, S. R.; Bar-Noy, S.; Kwon, J.; Levine, R. L.; Stadtman, T. C.; Rhee, S. G., Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc. Natl. Acad. Sci. U. S .A. 2000, 97 (6), 2521-6.
101. Haendeler, J.; Hoffmann, J.; Tischler, V.; Berk, B. C.; Zeiher, A. M.; Dimmeler, S., Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat. Cell. Biol. 2002, 4 (10), 743-9.
102. Levonen, A. L.; Landar, A.; Ramachandran, A.; Ceaser, E. K.; Dickinson, D. A.; Zanoni, G.; Morrow, J. D.; Darley-Usmar, V. M., Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 2004, 378 (Pt 2), 373-82.
103. Zhang, R.; Hess, D. T.; Qian, Z.; Hausladen, A.; Fonseca, F.; Chaube, R.; Reynolds, J. D.; Stamler, J. S., Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (20), 6425-6430.
104. Scotcher, J.; Clarke, D. J.; Mackay, C. L.; Hupp, T.; Sadler, P. J.; Langridge-Smith, P. R. R., Redox regulation of tumour suppressor protein p53: identification of the sites of hydrogen peroxide oxidation and glutathionylation. Chem. Sci. 2013, 4 (3), 1257-1269.
105. Kim, D. H.; Kundu, J. K.; Surh, Y. J., Redox modulation of p53: mechanisms and functional significance. Mol. Carcinog. 2011, 50 (4), 222-34.
106. Buzek, J.; Latonen, L.; Kurki, S.; Peltonen, K.; Laiho, M., Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. Nucleic. Acids. Res. 2002, 30 (11), 2340-8.
107. Ko, Y. J.; Wang, H.; Li, X.; Bowen, K. H.; Lecomte, F.; Desfrancois, C.; Poully, J.-C.; Gregoire, G.; Schermann, J. P., Intrinsic Neutral and Anionic Structures of Glutathione. Chemphyschem 2009, 10 (17), 3097-3100.
108. Fiser, B.; Szori, M.; Jojart, B.; Izsak, R.; Csizmadia, I. G.; Viskolcz, B., Antioxidant Potential of Glutathione: A Theoretical Study. J. Phys. Chem. B 2011, 115 (38), 11269-11277.
109. Krezel, A.; Bal, W., Structure-function relationships in glutathione and its analogues. Org. Biomol. Chem. 2003, 1 (22), 3885-90.
110. Vila-Viçosa, D.; Teixeira, V. H.; Santos, H. A. F.; Machuqueiro, M., Conformational Study of GSH and GSSG Using Constant-pH Molecular Dynamics Simulations. J. Phys. Chem. B 2013, 117 (25), 7507-7517.
111. Seebach, D.; Beck, A. K.; Bierbaum, D. J., The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components. Chem. Biodivers 2004, 1 (8), 1111-239.
112. Frackenpohl, J.; Arvidsson, P. I.; Schreiber, J. V.; Seebach, D., The outstanding biological stability of beta- and gamma-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. Chembiochem. 2001, 2 (6), 445-55.
113. Tsai, Y. I.; Kuo, S. C., PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmos. Environ. 2005, 39 (27), 4827-4839.
114. Fehsenfeld, F. C.; Ferguson, E. E., Laboratory studies of negative ion reactions with atmospheric trace constituents. J. Chem. Phys. 1974, 61 (8), 3181-3193.
115. McEwen, K. L., Electronic Structures and Spectra of Some Nitrogen‐Oxygen Compounds. J. Chem. Phys. 1961, 34 (2), 547-555.
116. Betsuyaku, H., Calculation of the Charge Distribution and Orbital Energies of the Ground State of the Nitrite Ion by the CNDO Method. J. Chem. Phys. 1969, 50 (7), 3118-3119.
117. Bishop, D., Molecular orbital energy levels for the sulfate Ion. Theoretica chimica acta. 1967, 8 (4), 285-291.
118. Zhuravlev, Y. N.; Korabelnikov, D. V., The nature of the electronic states and photoelectron spectra of oxyanion crystals. J. Struct. Chem. 2009, 50 (6), 1021-1028.
119. Connor, J. A.; Hillier, I. H.; Saunders, V. R.; Barber, M., On the bonding of the ions PO4 3-, SO4 2-, ClO4 -, ClO3 - and CO3 2- as studied by X-ray spectroscopy and ab initio SCF-MO calculations. Mol. Phys. 1972, 23 (1), 81-90.
120. Song, X.; Hamano, H.; Minofar, B.; Kanzaki, R.; Fujii, K.; Kameda, Y.; Kohara, S.; Watanabe, M.; Ishiguro, S.-i.; Umebayashi, Y., Structural Heterogeneity and Unique Distorted Hydrogen Bonding in Primary Ammonium Nitrate Ionic Liquids Studied by High-Energy X-ray Diffraction Experiments and MD Simulations. J. Phys. Chem. B 2012, 116 (9), 2801-2813.
121. Boyd, R. J.; Choi, S. C., Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions. Chem. Phys. Lett. 1986, 129 (1), 62-65.
122. Mack, J.; Bolton, J. R., Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. A 1999, 128 (1–3), 1-13.
123. Gonzalez, M. C.; Braun, A. M., VUV photolysis of aqueous solutions of nitrate and nitrite. Res. Chem. Intermed. 1995, 21 (8-9), 837-859.
124. Gonzalez, M. C.; Braun, A. M., Vacuum-UV photolysis of aqueous solutions of nitrate: effect of organic matter I. Phenol. J. Photochem. Photobiol. A 1996, 93 (1), 7-19.
125. Bandis, C.; Scudiero, L.; Langford, S. C.; Dickinson, J. T., Photoelectron emission studies of cleaved and excimer laser irradiated single-crystal surfaces of NaNO3 and NaNO2. Surf. Sci. 1999, 442 (3), 413-419.
126. Mauldin Iii, R. L.; Berndt, T.; Sipila, M.; Paasonen, P.; Petaja, T.; Kim, S.; Kurten, T.; Stratmann, F.; Kerminen, V. M.; Kulmala, M., A new atmospherically relevant oxidant of sulphur dioxide. Nature 2012, 488 (7410), 193-196.
127. Huang, H.-L.; Chao, W.; Lin, J. J.-M., Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (35), 10857-10862.
128. Cziczo, D. J.; Froyd, K. D.; Hoose, C.; Jensen, E. J.; Diao, M.; Zondlo, M. A.; Smith, J. B.; Twohy, C. H.; Murphy, D. M., Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science 2013, 340 (6138), 1320-1324.
129. Shilling, J. E. F., T. J.; Tolbert, M. A., Depositional ice nucleation on crystalline organic and inorganic solids. J. Geophys. Res. Atmos. 111 (D12), D12204.
130. Cannon, W. R.; Pettitt, B. M.; McCammon, J. A., Sulfate Anion in Water: Model Structural, Thermodynamic, and Dynamic Properties. J. Phys. Chem. B 1994, 98 (24), 6225-6230.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code