Responsive image
博碩士論文 etd-0726105-182114 詳細資訊
Title page for etd-0726105-182114
論文名稱
Title
有機及軟性基板內埋被動式元件設計與模型化研究
Design and Modeling of Embedded Passives in Organic and Flexible Substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-12
繳交日期
Date of Submission
2005-07-26
關鍵字
Keywords
軟性基板、內埋被動式元件、有機基板
Organic substrate, Flexible substrate, Embedded passives
統計
Statistics
本論文已被瀏覽 5718 次,被下載 7241
The thesis/dissertation has been browsed 5718 times, has been downloaded 7241 times.
中文摘要
本論文主要分為三個部份,第一個部份將探討有機與軟性基板之結構與製程以及內埋被動式元件設計流程,並且比較電磁模擬與實際量測之結果。第二個部份探討建立寬頻模型的理論與過程,並與Pi模型或是電磁模擬結果做比較。第三個部份則藉由內埋被動式元件模型資料庫之建立經驗,嘗試在有機基板中設計內埋式帶通濾波器。由於有機基板缺少大電容值元件製程,故發展以T原型方式設計帶通濾波器,讓所用到的集總元件值限制在較大電感值與較小電容值的範圍內。最後實現之內埋式帶通濾波器具有尺寸小性能佳之特色,適合應用於無線通訊之射頻單封裝系統中。
Abstract
The thesis is mainly divided into three parts. The first part will discuss about structures, manufacture, and design flow of embedded passives in organic and flexible substrates, and the results of measurement and electromagnetic (EM) simulation will be compared as well. Second part will discuss the theory and the process of establishing broadband model, and the broadband model will be compared to Pi model and EM simulation. In the third part, we will try to design embedded bandpass filters in organic substrate by the experience of establishing the library of embedded passives. Because of lacking of the fabrication of large capacitance devices in organic substrate, we design bandpass filters by using T type in order to limit the lump devices in the larger inductance and smaller capacitance. The final result of the filters are small in size and have high performance, thus they can be well applied to the RF system in chip (SIP) of wireless communication.
目次 Table of Contents
第一章 緒論
第二章 有機及軟性基板之內埋被動式元件與電磁模擬
2.1 簡介
2.2 有機與軟性基板製程技術與應用
2.2.1有機基板
2.2.2軟性基板
2.3 內埋被動式元件設計流程
2.4 電磁模擬與量測之比較
2.4.1有機基板內埋被動式元件之模擬實例
2.4.2軟性基板內埋被動式元件之模擬實例
第三章 寬頻模型化理論
3.1 簡介
3.2 寬頻模型化理論
3.2.1 有實數極點的等效電路
3.2.2 有共軛複數對極點的等效電路 3.2.3 兩埠以上的等效電路合成
3.3 寬頻模型與量測萃取Pi及EM模擬之比較
第四章 內埋式帶通濾波器之電路設計
4.1 簡介
4.2 帶通濾波器設計理論
4.2.1 諧振器耦合機制
4.2.2 T模型帶通濾波器理論分析
4.3 內埋式帶通濾波器設計流程
4.4 內埋式帶通濾波器模擬與量測之分析與探討
第五章 結論
參考文獻
附錄一
參考文獻 References
[1] C. L. Weng, P. S. Wei, C. K. Wu, C, S. Chen, U. M. Jow, and Y. J. Lai, “Embedded passives technology for Bluetooth application in multi-layer printed wiring board (PWB),” in Proc. 54th, Electronic Components and Technology Conference, 2004, pp. 1124-1128.
[2] V. Govind, S. Dalmia, J. Choi, and M. Swaminathan, “Design and implementation of RF subsystems with multiple embedded passives in multi-layer organic substrates,” in Proc. Radio and Wireless Conf., 2003, pp.325-328.
[3] L. Li, P. Bowles, L. T. Hwang, and S. Plager, “Embedded passives in organic substrate for bluetooth transceiver module,” in Proc. 53rd, Electronic Components and Technology Conference, 2003, pp. 464-469.
[4] K. L. Choi and M. Swaminathan, “Development of model libraries for embedded passives using network synthesis,” IEEE Trans. Circuits and Systems-II, vol. 47, pp. 249-260, April 2000.
[5] J. Laskar, A. Sutono, C. H. Lee, M. F. Davis, M. Maeng, N. Lal, K. Lim, S. Pinel, M. Tentzeris, and A. Obatoyinbo, “Development of integrated 3D radio front-end system-on-package (SOP),” in GaAs IC Symp. Tech. Dig., 2001, pp. 215-218.
[6] M. F. Davis, A. Sutono, K. Lim, J. Laskar, V. Sundaram, J. Hobbs, G. E. White, and R. Tummala, “RF-microwave multi-layer integrated passives using fully organic System on Package (SOP) technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 1731-1734.
[7] M. Rytivaara, “Buried passive elements manufactured in LTCC,” in Proc. IEE Packaging and Interconnects at Microwave and Millimeter-Wave Frequencies Seminar, 2000, pp. 6/1-6/5.
[8] L. Li, “Embedded passives in organic substrate for RF module and assembly characterization,” in Proc. High Density Microsystem Design and Packaging and Component Failure Analysis, 2004, pp. 74-82.
[9] M. F. Davis, S. W. Yoon, S. Mandal, N. Bushyager, M. Maeng, K. Lim, S. Pinel, A. Sutono, J. Laskar, M. Tentzeris, T. Nonaka, V. Sundaram, F. Liu, and R. Tummala, ”RF-microwave multi-band design solutions for multilayer organic system on package integrated passives,” in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 2217-2220.
[10] G. Sommer, M. Petras, B. Mohamadou, F. Salhi, S. Korf, G. Fotheringham, R. Henderson, W. Blood, L. T. Hwang, R. Croswell, R. Lempkowski, J. Savic, M. Miller, W. John, and H. Reichl, “Development of a design library for embedded passive RF components in HDI organic substrate material,” IEEE Trans. Electromagnetic Compatibility, vol. 2, pp.852-855, May 2003.
[11] I. R. Abothu, P. M. Raj, D. Balaraman, M. D. Sacks, S. Bhattacharya, and R. R. Tummala, “Low-cost embedded capacitor technology with hydrothermal and sol-gel processes,” in Proc. Advanced Packaging Materials, 2004, pp. 78-83.
[12] E. Itoh, T. Murayama, T. Highchi, and K. Miyairi, “The use of high K dielectric thin film prepared by RF sputtering as insulating layers for organic TFT devices,” in Proc. Solid Dielectrics, 2004, pp. 411 – 414.
[13] T. S. Horng, Y. S. Tsai, C. T. Chiu, S. M. Wu, C. P. Hung, R. Chen, and C.H. Chu, “Development of High-Q Embedded Passive Library for RF-SOP Module Applications,” in Proc. 55th, Electronic Components and Technology Conference, 2005, pp. 1590-1593.
[14] H. Maruo, Y.Seki, and Y. Unami, “Development of ultrasonic flip chip bonding for flexible printed circuit,” in Proc. High Density Microsystem Design and Packaging and Component Failure Analysis, 2004, pp.307-310.
[15] T. Lenihan, L. Schaper, Y. Shi, G. Morcan, and J. Parkerson, “Embedded thin film resistors, capacitors and inductors in flexible polyimide films,” in Proc. 46th, Electronic Components and Technology Conference, 1996, pp. 119-124.
[16] B. Ong, “Towards printed organic electronics,” in Proc. Asian Green Electronics, 2004, pp. 42.
[17] A. A. Ciubotaru and R. L. Carter, “Capacitance topology for high frequency modeling of bipolar transistors,” in IEEE MTT-S Int. Microwave Symp. Dig., 1997, pp. 1477-1480.
[18] V. Kasemsuwan, H. Ahn, and M. El Nokali, “A high frequency model for high electron mobility transistors,” in Proc. 5th, Properties and Applications of Dielectric Materials, 1997, pp. 480-483.
[19] M. Fernandez-Barciela, P. J. Tasker, Y. Campos-Roca, M. Demmler, H. Massler, E. Sanchez, M. C. Curras-Francos, and M. Schlechtweg, “A simplified broad-band large-signal nonquasi-static table-based FET model,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 395-405, Mar. 2000.
[20] A. C. Watson, D. Melendy, P. Francis, H. Kyuwoon, and A. Weisshaar, “A comprehensive compact-modeling methodology for spiral inductors in silicon-based RFICs,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 849-857, Mar. 2004.
[21] D. C. Chang and J. X. Zheng, “Electromagnetic modeling of passive circuit elements in MMIC,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 1741-1747, Sept. 1992.
[22] C. T. Chiu, T. S. Horng, H. L. Ma, S. M. Wu, and C. P. Hung, “Super broadband lumped models for embedded passives,” in Proc. 54th, Electronic Components and Technology Conference, 2004, pp.1664– 1670.
[23] R. Gao, Y. S. Mekonnen, W. T. Beyene, and J. E. Schutt-Aine, “Black-Box Modeling of Passive Systems by Rational Function Approximation,” in Proc. Adv. Packag., May 2005, pp.209-215.
[24] B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Delivery, vol. 14, pp. 1052-1061, July 1999.
[25] W. Pinello, J. Morsey, and A. Cangellaris, “Synthesis of SPICE-compatible broadband electrical models for pins and vias,” in Proc. 51st, Electronic Components and Technology Conference, 2001, pp. 518-522.
[26] G. Antonini, “SPICE equivalent circuits of frequency-domain responses,” IEEE Trans. Electromagnetic Compatibility, vol. 45, pp.502-512, Aug. 2003.
[27] V. Govind, S. Dalmia, and M. Swaminathan, “Design of integrated low noise amplifiers (LNA) using embedded passives in organic substrates,” IEEE Trans. Adv. Packg., vol 27, pp.79-89, Feb. 2004.
[28] S. Dalmia, A. Bavisi, S. Mukherjee, V. Govind, G. White, M. Swaminathan, and V. Sundaram, “A multiple frequency signal generator for 802.11a/b/g VoWLAN type applications,” in Proc. 54th, Electronic Components and Technology Conference, 2004, pp. 1664-1670.
[29] 邱基綜,多層有機封裝基板上螺旋電感器之可比例伸縮寬頻模型,國立中山大學電機工程研究所碩士論文,2004。
[30] 蕭傳義,IC載板關鍵原物料簡介,工研院IEK中心ITIS專欄. (2004年11月16日). [Online]. Available: http://itisdom.itri.org.tw/itri/itisnews.nsf/ViewUM_D
[31] V. Sundaram, F. Liu, S. Dalmia, G. E. White, R. R. Tummala, “Process integration for low-cost system on a package (SOP) substrate, ” in Proc. 51th, Electronic Components and Technology Conference, 2001, pp. 535-540.
[32] D. Shaowei, M. Jingkun, T. H. Hubing, J. L. Drewniak, F. Jun, J. L. Knighten, N. W. Smith, and R. Alexander, “Effects of open stubs associated with plated through-hole vias in backpanel designs,” in Proc. IEEE Int. Symp. on EMC, 2004, vol. 3, pp. 1017-1022.
[33] I. J. Bahl, “High-performance inductors,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 654-664, April 2001.
[34] T. S. Chen, J. D. S. Deng, C. Y. Lee, and C. H. Kao, “Improved performance of Si-based spiral inductors,” IEEE Microwave and Wireless Components Lett., vol. 14, pp. 466-468, Oct. 2004.
[35] J. M. Lopez-Villegas, J. Samitier, C. Cane, and P. Losantos, “Improvement of the quality factor of RF integrated inductors by layout optimization,” in IEEE RFIC Symp. Dig., 1998, pp. 169-172.
[36] I. J. Bahl, Lumped Elements for RF and Microwave Circuit. Boston: Artech House Inc., 2003, ch. 3.
[37] K. B. Ashby, I. A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian, “High Q inductors for wireless applications in a complementary silicon bipolar process,” IEEE J. Solid-State Circuits, vol. 31, pp. 4-9, Jan. 1996.
[38] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patterned ground shields for Si-based RF ICs,” IEEE J. Solid-State Circuits, vol. 33, pp. 743-752, May 1998.
[39] K. Murata, T. Hosaka, and Y. Sugimoto, “Effect of a ground shield of a silicon on-chip spiral inductor,” in Proc. IEEE Asia-Pacific Microwave Conf., 2000, pp177-180.
[40] J. H. Gau, S. Sang, R. T.Wu, F. J. Shen, H. H. Chen, A. Chen, and J. Ko, “Novel fully symmetrical inductor,” Electron Device Lett., vol.25, pp.608-609, Sept. 2004.
[41] 蔡第奇,平衡式元件之向量網路分析儀量測技術,國立中山大學電機工程研究所碩士論文,2002。
[42] L. H. Hsieh and K. Chang, “Compact, low insertion loss, sharp rejection wideband bandpass filters using dual-mode ring resonators with tuning stubs,” Electron. Lett., vol. 37, pp. 1345-1347, Oct. 2001.
[43] D. M. Pozar, Microwave Engineering, 2nd ed., John Wiley & Sons Inc., 1998, ch. 8.
[44] R. Levy, R. V. Snyder, and G. Matthaei, “Design of microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 783-793, Mar. 2002.
[45] A. Sutono, J. Laskar, and W. R. Smith, “Design of miniature multilayer on-package integrated image-reject filters,” IEEE Trans. Microwave Theory Tech., vol. 51, pp.156-162, Jan. 2003.
[46] R. Rhea, “Transmission Zeros in Filter Design,” Applied Microwave & Wireless, vol. 13, pp. 92-96, Jan. 2001.
[47] C. Bowick, RF Circuit Design, Newnes: Indianapolis Inc., 1982, ch. 2.
[48] LFB322G45SN1A504 Filters for Communication Equivalent Data Sheet, Murata Manufacturing, Japen, 2001.
[49] MDR746F Multilayered Filters Data sheet, Compotron Ltd., UK, 2000.
[50] SDB2442A0122 Multilayered Filters Data sheet, Sanyo Electric Co. Ltd.,2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code