Responsive image
博碩士論文 etd-0726108-235711 詳細資訊
Title page for etd-0726108-235711
論文名稱
Title
平面型變壓器為基礎之積體化被動元件設計與模型化研究
Design and Modeling of Planar Transformer-based Integrated Passive Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-25
繳交日期
Date of Submission
2008-07-26
關鍵字
Keywords
平面型變壓器、巴倫器、積體化被動元件
Planar Transformer, Balun, Integrated Passive Device
統計
Statistics
本論文已被瀏覽 5735 次,被下載 63
The thesis/dissertation has been browsed 5735 times, has been downloaded 63 times.
中文摘要
本論文討論的重點有二。第一部分是對平面型變壓器以及其相關應用電路的設計做完整介紹,針對平面型變壓器混合模態散射參數及其對地效應做討論,並建立物理模型。第二部份則為了實現高效率變壓器研發出新纏繞方法,讓變壓器具有任意圈數比並能應用在功率分配器及相位移上。特別是蜂巢型功率分配架構是本論文創新的設計,使得以平面型變壓器為基礎的各類型被動元件可以廣泛地實現於積體化被動元件製程。其中,本論文提出高效率巴倫器的設計流程,首先針對負載阻抗設計在操作頻帶內高品質因子的變壓器,再讓不平衡訊號之參考接地設在平衡訊號之虛擬接地軸線上,並搭配適度的阻抗匹配電路,即可完成性能優良的巴倫器設計。
Abstract
This thesis is mainly composed of two parts. The first part is to introduce the planar transformer-based circuits and their applications. The mixed-mode S parameters and the grounding effects for planar transformers are discussed. A physical model has been developed for modeling the planar transformers. In the second part, a new coil winding technique for planar transformers has been presented to realize a high-efficiency planar transformer with arbitrary turn ratio for power-split/combine and phase-shift applications. Especially, the power-split/combine architecture based on a planar transformer of cellular shape is first presented in this thesis, enabling various kinds of passive components to be widely realized using the integrated passive device processes. As an example, this thesis proposes a design procedure for high-efficiency balun component. Firstly, design a high Q transformer that considers the load impedance effects. Secondly, design the ground reference for un-balanced signal on the virtual ground symmetry axis for balanced signals. Thirdly, design impedance matching networks for minimizing un-balanced and balanced port return losses. Then, a high performance planar transformer-based balun design can be done.
目次 Table of Contents
目錄..............................................................................................I
圖目錄.......................................................................................III
表目錄.......................................................................................VI
第一章 緒論................................................................................1
1.1 背景簡介...............................................................................1
1.2 研究動機...............................................................................2
1.3 積體化被動式元件製程結構簡介.......................................2
1.4 以變壓器為基礎之被動式元件沿革...................................4
1.5 章節介紹...............................................................................4
第二章 平面型變壓器基本原理及應用電路介紹....................5
2.1 理想變壓器...........................................................................5
2.2 耦合電感器組成變壓器方法...............................................6
2.3 耦合電感器等效電路...........................................................7
2.4 平面型變壓器設計...............................................................9
2.5 以平面型變壓器為基礎之被動元件設計.........................12
2.5.1巴倫器...............................................................................13
2.5.2 功率結合電路..................................................................14
2.5.3 帶通濾波器......................................................................16
2.6 平面型變壓器的重要參數.................................................17
第三章 平面型變壓器電性分析與等效電路模型化..............20
3.1 混合模態散射參數分析.....................................................20
3.1.1 差動式電路設計概念......................................................20
3.1.2 平衡性參數及性能評估..................................................22
3.2 接地效應探討.....................................................................31
3.2.1 接地方式對平衡式元件的影響......................................31
3.2.2 接地效應對植入損耗的影響..........................................35
3.3 等效電路模型.....................................................................37
第四章 平面型變壓器為基礎之積體化被動元件設計..........47
4.1 圈數比與功率分配.............................................................47
4.1.1 任意圈數比平面型變壓器設計方法與比較..................47
4.1.2 平面型變壓器為基礎之功率分配器設計方法..............53
4.2應用實例..............................................................................56
4.2.1 八邊形變壓器..................................................................56
4.2.2 八邊形巴倫器..................................................................62
4.2.3 六邊形功率分配器..........................................................65
4.2.4 不同功率結合電路設計與比較......................................69
4.2.5 四埠功率分配器..............................................................73
第五章 結論..............................................................................75
參考文獻...................................................................................76
參考文獻 References
[1] K. Zoschke, M. J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Kaletta, F. J. Schmuckle, and H. Reichl, “Fabrication of application specific integrated passive devices using wafer level packaging technologies,” IEEE Trans. Microwave Theory Tech., vol. 30, pp. 359-368, Aug. 2007.
[2] G. Carchon, K. Vaesen, S. Brebels, W. D. Raedt, E. Beyne, and B. Nauwelaers, “Multilayer thin-film MCM-D for the integration of high-performance RF and microwave circuits,” IEEE Trans. Components and Packaging Tech., vol. 24, pp. 510-519, Sept. 2001.
[3] D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998.
[4] 楊智惠,微帶與鐵心微波被動式元件之研製,國立中山大學電機工程學系碩士論文,1997。
[5] 黃毓洲,寬頻帶射頻傳輸線轉換器之設計,國立中山大學電機工程學系寬頻通訊網路產業研發碩士專班碩士論文,2008。
[6] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[7] K. Shibata, K. Hatori, Y. Tokumitsu, and H. Komizo, “Microstrip spiral directional coupler,” IEEE Trans. Microwave Theory Tech., vol. 29, pp. 680–689, July 1981.
[8] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, June 1989, pp. 661–664.
[9] H. J. Finlay, “U.K. patent application,” 8 800 115, 1985.
[10] M. W. Geen, G. J. Green, R. G. Arnold, J. A. Jenkins, and R. H. Jansen,“Miniature multilayer spiral inductors for GaAs MMICs,” in Proc. GaAs IC Symp., Oct. 1989, pp. 303–306.
[11] A. M. Niknejad, Electromagnetics for High-Speed Analog and Digtal Communication Circuits, New York: Cambridge, 2007.
[12] J. L. B. Walker, D. P. Myer, F. H. Raab, and C. Trask, Classic Works In RF Engineering: Combiners, Couplers, Transformers, and Magnetic Materials, Norwood: Artech house, 2006.
[13] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer- A new power-combinationg and impedance-transformation technique,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 316-331, Jan. 2002.
[14] S. Kim, K. Lee, J. Lee, B. Kim, S. D. Kee, I. Aoki, and D. B. Rutledge, “An optimized design of distributed active transformer,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 380-388, Jan. 2005.
[15] P. Haldi, G. Liu, and A. M. Niknejad, “CMOS compatible transformer power combiner,” Electron. Lett., vol. 42, pp. 1091-1092, Sept. 2006.
[16] J. T. Kuo, M. J. Maa, and P. H. Lu, “A microstrip elliptic function filter with compact miniaturized hairpin resonators,” IEEE Microwave and Guided Wave Lett., vol. 10, pp. 94-95, March 2000.
[17] C. M. Tsai, S. Y. Chen, and C. C. Tsai, “Performance of a planar filter using a 0o feed structure,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2362-2367, Oct. 2002.
[18] L. K. Yeung and K. L. Wu, “An integrated RF balanced-filter with enhanced rejection characteristics,” in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 4.
[19] R. P. Ribas, J. Lescot, J. L. Leclercq, J. M. Karam, and F. Ndagijimana, “Micromachined microwave planar spiral inductors and transformers,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1326-1335, Aug. 2000.
[20] An Introduction to Muti-port and Balanced Devices Measurements, application Note 1373-1, 2002, Agilent Technologies.
[21] W. R. Eisenstadt, B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-Mode S-parameters, Norwood: Artech house, 2006.
[22] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron Devices, vol. 47, pp. 560-568, March 2000.
[23] Q. El-Gharniti, E. Kerherve, and J. B. Begueret, “Design and modeling of on-chip monolithic transformers with patterned ground shield,” IEEE ISCAS Proc., 2006, pp. 21-24.
[24] O. El-Gharniti, E. Kerherve, and J. B. Begueret, “Modeling and Characterization of On-Chip Transformers for Silicon RFIC,” IEEE Trans. Microwave Theory Tech., vol. 55, pp. 607-615, April 2007.
[25] O. El-Gharniti, E. Kerherve, and J. B. Begueret, “Systematic design methodology for on-chip transformers with patterned ground shield,” in Proc. IEEE Radio-Frequency Integrated Circuit Symp., 2006, pp. 11-13.
[26] Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and Systems-II: Analog and Digital Signal Processing, vol.47, pp. 699-713,Aug. 2000.
[27] J. C. Guo and T. Y. Tan, “A broadband and scalable model for on-chip inductors incorporating substrate and conductor loss effects,” IEEE Radio Frequency Integrated Circuit Symp. Dig., 2005, pp. 593-596.
[28] F. W. Grover, Inductance Calculations Working Formulas And Tables, New York: Dover Publications, 1962.
[29] D. Kehrer, W. Simburger, H. D. Wohlmuth, and A. L. Scholtz, “Modeling of monolithic lumped planar transformers up to 20 GHz,” in IEEE Custom Integrated Circuits Conf., 2001, pp. 401-404.
[30] S. Kapur, D. E. Long, R. C. Frye, Y. C. Chen, M. H. Cho, H. W. Chang, J. H. Ou, and B. Hung, “Synthesis of Optimal On-Chip Baluns,” in IEEE Custom Integrated Circuits Conf., 2007, pp. 507-510.
[31] S. C. Tseng, C. Meng, C. H. Chang, C. K. Wu, and G. W. Huang, “Monolithic broadband Gilbert micromixer with an integrated Marchand balun using standard silicon IC process,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 4362-4371, Dec. 2006.
[32] W. B. Kuhn and N. M. Ibrahim, “Analysis of current crowding effects in multiturn spiral inductors,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 31-38, Jan. 2001.
[33] R. C. Frye, G. Badakere, Y. Lin, and P. Chelvam, “A monolithic, compact balun/matching network for SiP applications,” in Proc. 13th IEEE Topical Meeting on Electrical Performance of Electronic Packaging, 2004, pp. 37-40.
[34] G. Liu, T. J. K. Liu, and A. M. Niknejad, “A 1.2V, 2.4GHz Fully Integrated Linear CMOS Power Amplifier with Efficiency Enhancement,” in Proc. Custom Integrated Circuits Conf., 2006, pp. 141-144.
[35] P. W. Lai and S. I. Long, “A 5GHz CMOS low phase noise transformer power combining VCO,” in Proc. IEEE Radio-Frequency Integrated Circuit Symp., 2006, pp. 11-13.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.213.110.162
論文開放下載的時間是 校外不公開

Your IP address is 18.213.110.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code