Responsive image
博碩士論文 etd-0726109-131218 詳細資訊
Title page for etd-0726109-131218
論文名稱
Title
應用於無線通訊系統之數位預失真功率放大器與注入牽引振盪器研究
Research on Digitally Predistorted Power Amplifier and Injection-Pulled Oscillator for Wireless Communication System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-20
繳交日期
Date of Submission
2009-07-26
關鍵字
Keywords
高效率線性發射機、感測電路、射頻訊號完整性
highly efficient linear transmitter, sensing circuit, RF signal integrity
統計
Statistics
本論文已被瀏覽 5819 次,被下載 2023
The thesis/dissertation has been browsed 5819 times, has been downloaded 2023 times.
中文摘要
無線通訊系統經常因為功率放大器非線性失真之影響以及本地振盪器注入牽引之現象而惡化射頻訊號完整性。本論文研究功\率放大器與本地振盪器在故意輸入失真或干擾下之行為,藉此討論所造成之訊號完整性以及改善方法,並探索在無線通訊上的創新應用。基於這樣的思維,本論文涵蓋了三個研究題目。首先,本論文採用基頻數位預失真技術來提升無線射頻發射機的線性度,所實現之數位預失真器能同時針對線性功\率放大器與切換式功率放大器非線性特性所引起的振幅與相位失真進行補償。第二,本論文針對本地振盪源易受注入訊號干擾的特性進行了完整的分析。本論文提出一種頻域分析方法,能得知鎖相迴路對注入訊號的影響在頻域中具有一帶通響應,並能準確預測鎖相迴路受到同頻干擾時之相位雜訊變化;本論文同時提出一種離散時域的分析方法,能夠準確預測本地振盪源受到正弦訊號或調制訊號注入干擾時,本地振盪源的輸出頻譜。最後,本論文提出一種能應用於感知無線電系統的射頻感測電路架構;所提出之射頻感測電路利用振盪器注入鎖定與頻率解調技術能快速且可靠地感測出環境頻譜中類比或數位調制訊號的頻率位置與功\率準位。除此之外,本論文並提出一個離散時域的計算模型用以預測射頻感測電路之感測結果。
Abstract
In a wireless communication system, the RF signal integrity is often deteriorated by power amplifier (PA) nonlinearity and local oscillator (LO) pulling. This dissertation attempts to study power amplifier and local oscillator with the deliberate input distortion or interference for understanding, and hence improving, the resultant RF signal integrity issues. Furthermore, the scope of this study is extended to explore novel wireless applications. Based on the above thoughts, this dissertation includes three topics. The first topic is devoted to a baseband digital predistortion technique for enhancing the power amplifier linearity in a wireless RF transmitter. A digital predistorter has been designed to compensate the amplitude and phase distortion due to the nature of PAs, and the predistortion can enhance the linearity of linear PAs as well as switching-mode PAs. The second topic proceeds with a rigorous analysis of a local oscillator subject to injection signal. A phase-locked loop (PLL) under injection is analyzed in frequency domain to account for the inherent band-pass filtering on an injection signal. Such analysis can further predict the effect of co-frequency or co-channel interference on the PLL phase noise. A discrete-time analysis is also provided to predict output spectra of the LO pulled by a sinusoidal and modulated injection signal. The final topic presents a novel RF sensing circuit for a cognitive radio to sense spectral environment using injection locking and frequency demodulation techniques. The proposed RF sensing circuit can fast and reliably detect frequency and power for analog and digital modulation signals. In addition, the sensing principle and circuit architecture are delivered on theoretical basis developed in this dissertation. A discrete time approach is also investigated to compute the sensed output signal.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Power Amplifier Nonlinearity 2
1.3 Linearization Techniques 2
1.3.1 Feedback Linearization 4
1.3.2 Feedforward Linearization 4
1.3.3 Predistortion Techniques 5
1.4 Local Oscillator Pulling 12
1.4.1 Injection Locking 13
1.4.2 Injection Pulling 13
1.4.3 Injection Pulling on Phase-Locked Loops 15
1.5 Applications of Injection-Locked Oscillators 16
1.5.1 Synchronous Amplifier 16
1.5.2 Subharmonic Injection-Locked Oscillator 17
1.5.3 Superharmonic Injection-Locked Oscillator and Frequency Divider 20
1.6 Overview of Dissertation 20
2 Power Amplifier Linearization 21
2.1 Transmitter Architecture 21
2.2 Baseband Predistorter and Applied Systems 23
2.2.1 Quadrature Modulator-Based Transmitter 23
2.2.2 HQPM-Based Transmitter 25
2.2.3 Baseband Digital Predistorter 28
2.3 Results and Discussions 29
2.3.1 Quadrature Modulator-Based Transmitter 30
2.3.2 HQPM-Based Transmitter 33
2.4 Summary 37
3 Analysis of a Phase-Locked Oscillator under Injection 38
3.1 Generalized Locking Equation 39
3.1.1 The Proposed Approach 39
3.1.2 Locking Range 43
3.1.3 Frequency Pulling 44
3.1.4 Synchronization Condition 45
3.2 Injection-Pulling on Phase-Locked Loops 47
3.2.1 Loop Equation 47
3.2.2 Frequency Domain Approach 49
3.2.3 Discrete-time Domain Approach 51
3.3 Phase Noise Analysis 52
3.3.1 Phase Noise of an Injection-Locked Oscillator 52
3.3.2 Phase Noise of a Phase-Locked Oscillator under Injection 55
3.4 Results and Discussions 58
3.4.1 Sinusoidal Signal Injection 58
3.4.2 Modulated Signal Injection 64
3.5 Summary 66
4 An RF Sensing Circuit for Cognitive Radio Applications 67
4.1 Introduction 67
4.2 Sensing Architecture and Mechanism 68
4.2.1 System Architecture and Operation 68
4.2.2 Sensing Principle 69
4.2.3 Frequency Demodulation 73
4.2.4 Frequency and Power Detection 74
4.3 Computed and Experimental Results 75
4.3.1 Sinusoidal Signal Sensing Results 76
4.3.2 Modulation Signal Sensing Results 77
4.3.3 Receiver Detection Results 79
4.4 Summary 81
5 Conclusions 82
Bibliography 84
Appendix
A Derivation of the Locking Equation in Discrete-time Domain 94
Vita 96
參考文獻 References
[1] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999.
[2] S. C. Cripps, Advanced Techniques in RF Power Amplifier Design, Norwood, MA: Artech House, 2002.
[3] P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[4] B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits and Devices Magazine, vol. 12, no. 5, pp. 12–25, Sep. 1996.
[5] B. Razavi, “RF transmitter architectures and circuits,” in Proc. Custom Integrated Circuits Conf., San Diego, CA, 1999, pp. 197–204.
[6] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[7] M. E. Heidari and A. A. Abidi, “Behavioral models of frequency pulling in oscillators,” in Proc. IEEE Int. Behavioral Modeling Simulation Workshop, San Jose, CA, 2007, pp. 100–104.
[8] P. Maffezzoni and D. D’Amore, “Evaluating pulling effects in oscillators due to small-signal injection,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 1, pp. 22–31, Jan. 2009.
[9] C.-J. Li, C.-H. Hsiao, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A rigorous analysis of local oscillators pulling in frequency and discrete-time domain,” in 2009 IEEE Radio Frequency and Integrated Circuits Symp. Dig., pp. 409–412.
[10] F. H. Raab, et al., “RF and microwave power amplifier and transmitter technologies –part 4,” High Frequency Electronics, pp. 38–49, Nov. 2003.
[11] S. P. Stapleton, G. S. Kandola, and J. K. Cavers, “Simulation and analysis of an adaptive predistorter utilizing a complex spectral convolution,” IEEE Trans. Vehicular Technology., vol. 41, no. 4, pp. 387–394, Nov. 1992.
[12] H. Besbes, T. Le-Ngoc, and H. Lin, “A fast adaptive polynomial predistorter for power amplifiers,” in Proc. IEEE Global Telecomm. Conf., San Antonio, TX, 2001, pp. 659–663.
[13] K. C. Lee and P. Gardner, “A novel digital predistorter technique using an adaptive neuro-fuzzy inference system,” IEEE Communications Letters., vol. 7, no. 2, pp. 55–57, Feb. 2003.
[14] H. H. Chen, C. H. Lin, P. C. Huang, and J. T. Chen, “Joint polynomial and look-up-table predistortion power amplifier linearization,” IEEE Trans. Circuits and Systems II, vol. 53, no. 8, pp. 612–616, Aug. 2006.
[15] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-up table techniques for adaptive digital predistortion: a development and comparison,” IEEE Trans. Vehicular Technology, vol. 49, no. 5, pp.1995–2002, Sep. 2000.
[16] J. K. Cavers, “Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements,” IEEE Trans. Vehicular Technology, vol. 39, no.4, pp. 374–382, Nov. 1990.
[17] J. K. Cavers, “Optimum table spacing in predistorting amplifier linearizers,” IEEE Trans .Vehicular Technology, vol. 48, no. 5, pp. 1699–1705, Sep. 1999.
[18] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-up table techniques for adaptive digital predistortion: a development and comparison,” IEEE Trans. Vehicular Technology, vol. 49, no. 5, pp.1995–2002, Sep. 2000.
[19] J. Y. Hassani and M. Kamareei, “Quantization error improvement in a digital predistorter for RF power amplifier linearization,” in Proc. IEEE Vehicular Technology Conf., Rhodes, Greece, 2001, pp. 1201–1204.
[20] Y. Nagata, “Linear amplification technique for digital mobile communications,” in Proc. IEEE Vehicular Technology Conf., San Francisco, CA, 1989, pp. 159–164.
[21] S. P. Stapleton, Digital Predistortion of Power Amplifiers, Agilent Technologies Inc. [online]. Available: http://www.agilent.com
[22] A. S. Wright and W. G. Durtler, “Experimental performance of an adaptive digital linearized power amplifier,” IEEE Trans. Vehicular Technology, vol. 41, no. 4, pp. 395–400, Nov. 1992.
[23] M. Faulkner and M. Johansson, “Adaptive linearization using predistortion – experimental results,” IEEE Trans. Vehicular Technology, vol. 43, no. 2, pp. 323–332, May 1994.
[24] L. Sundstrom, M. Haulkner, and M. Johanson, “Quantization analysis and design of a Digital predistortion linearizer for RF power amplifier,” IEEE Trans. Vehicular Technology, vol. 45, no. 4, pp. 707–719, Nov. 1996.
[25] S. Boumaiza, J. Li, M. J-.Saidane and F. M. Ghannouchi, “Adaptive digital/RF predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 12, pp. 2670–2677, Dec. 2004.
[26] W. J. Jung, W. R. Kim, K. M. King, and K. B. Lee, “Digital predistorter using multiple lookup tables,” Electronics Letters, vol. 39, no. 19, pp. 1386–1388, Sep. 2003.
[27] C. H. Lin, et al., “Dynamically optimum lookup-table spacing for power amplifier predistortion linearization,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 5, pp. 2118–2127, May 2006.
[28] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, June 1946.
[29] R. D. Huntoon and A. Weiss, “Synchronization of oscillators,” Proc. IRE, vol. 35, no. 12, pp. 1415–1423, Dec. 1947.
[30] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no. 11, pp. 1723–1727, Nov. 1965.
[31] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1386–1410, Oct. 1973.
[32] A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: generalized Adler’s equation and geometrical interpretation,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, 2006, pp. 737–740.
[33] B. Van der pol, “Forced oscillations in a circuit with nonlinear resistance,” Phil. Msg., vol. 3, pp. 65–80, Jan. 1927.
[34] I. Schmideg, “Harmonic synchronization of nonlinear oscillators” Proc. IEEE, vol. 59, no.8, pp. 1250-1251, Aug. 1971.
[35] R. C. Mackey, “Injection locking of klystron oscillators,” IRE Trans. Microwave Theory and Tech., vol. 10, no. 4, pp. 228–235, July 1962.
[36] H. L. Stover and R. C. Shaw, “Injection-locked oscillators as amplifiers for angle-modulated signals,” in 1966 IEEE G-MTT Int. Symp. Dig., pp. 60–66.
[37] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[38] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection-locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, no. 7, pp. 845–851, July 2002.
[39] S. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148–1154, July 2003.
[40] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425–1433, Sep. 2004.
[41] A. Mirzaei, M. E. Heidari, R. Bagheri, S. Chehrazi, and A. A. Abidi, “The quadrature LC oscillator: a complete portrait based on injection locking,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1916–1932, Sep. 2007.
[42] V. Uzunoglu and M. H. White, “The synchronous oscillator: a synchronization and tracking network,“ IEEE J. Solid-State Circuits, vol. sc-20, no. 6, pp. 1214–1226, Dec. 1985.
[43] V. Uzunoglu and M. H. White, “Carrier recovery techniques using synchronous oscillators,” in Proc. IEEE Military Communications Conf., Monterey, CA, 1986, pp. 13.6.1–13.6.5.
[44] V. Uzunoglu, “Coherent phase-locked synchronous oscillator,” Electronics Letters, vol. 20, no. 20, pp. 1060–1061, Sep. 1986.
[45] V. Uzunoglu and M. H. White, “Synchronous and the coherent phase-locked synchronous oscillators: new techniques in synchronization and tracking,” IEEE Trans. Circuits and Systems, vol. 36, no.7, pp. 997–1004, July 1989.
[46] V. Uzunoglu and M. H. White, “Coherent phase-locked synchronous oscillator (graphical design technique),” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 1, pp. 60–63, Jan. 1993.
[47] K. Murata, K. Sano, T. Akeyoshi, N. Shimizu, E. Sano, M. Yamamoto, and T. Ishibashi, “Optoelectronic clock recovery circuit using resonant tunneling diode and uni-travelling-carrier photodiode,” Electronics Letters, vol. 34, no. 14, pp. 1424–1425, July 1998.
[48] H. Kamitsuna, T. Shibata, and K. Kurishima, “Clock extraction using an InP/InGaAs HPT direct optical injection-locked oscillator IC with a very wide locking range,” in 14th Annu. Meeting IEEE Lasers and Electro-Optics Society Proc., San Diego, CA, 2001, pp. 240–241.
[49] J. Lasri, D. Dahan, A. Bilenca, G. Eisenstein, and D. Ritter, “Clock recovery at multiple bit rates using direct optical injection locking of a self-oscillating InGaAs-InP heterojunction bipolar phototransistor,” IEEE Photonics Technology Letters, vol. 13, no. 12, pp. 1355–1357, Dec. 2001.
[50] H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “10- and 39-GHz-band InP/InGaAs direct optical injection-locked oscillator ICs for optoelectronic clock recovery circuits,” in 2002 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1699–1702.
[51] H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “Direct optical injection locking of InP/InGaAs HPT oscillator ICs for microwave photonics and 40-Gbit/s-class optoelectronic clock recovery,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 12, pp. 3002–3008, Dec. 2002.
[52] H. Kamitsuna, T. Shibata, K. Kurishima, and M. Ida, “Direct optical injection locking of a 52-GHz InP-InGaAs HPT oscillator IC for over-100-Gb/s half- or full-rate optoelectronic clock recovery,” IEEE Photonics Technology Letters, vol. 15, no. 1, pp. 108–110, Jan. 2003.
[53] V. Uzunoglu, “The regenerative receiver and the synchronous oscillator,” Proc. IEEE, vol .75, no. 10, pp. 1437, Oct. 1987.
[54] E. Main and D. Coffing, “FM demodulation using an injection-locked oscillator,” in 2000 IEEE MTT-S Int. Microwave Symp. Dig., pp. 135–138.
[55] E. Main and D. Coffing, “An FSK demodulator for bluetooth applications having no external components,” IEEE Trans. Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, no. 6, pp. 373–378, June 2002.
[56] F. Ramírez, V. A. Araña, and A. Suárez, “Frequency demodulator using an injection-locked oscillator: analysis and design,” IEEE Microwave and Wireless Component Lett., vol. 18, no. 1, pp. 43–45, Jan. 2008.
[57] Y. Tajima, “GaAs FET applications for injection-locked oscillators and self-oscillating mixers,” IEEE Trans. Microwave Theory and Tech., vol. MTT-27, no. 7, pp. 629–632, July 1979.
[58] M. Sironen, Y. Qian, and T. Itoh, “A subharmonic self-oscillating mixer with integrated antenna for 60-GHz wireless applications,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 3, pp. 442–450, Mar. 2001.
[59] S. Kobayashi and T. Kimura, “Coherence of injection phase-locked AlGaAs semiconductor laser,” Electronics Letters, vol. 16, no. 7, pp. 668–670, 1980.
[60] A. C. Bordonalli, A. J. Seeds, and R. T. Ramos, “Low phase noise optical phase-lock loops using combined injection locking and phase locking,” in Inst. Elec. Eng. Colloquium on Microwave Opto-Electronics, London, UK, 1994, pp. 6/1–6/5.
[61] R. T. Ramos, P. Gallion, D. Erasme, A. J. Seeds, and A. C. Bordonalli, “Optical injection locking and phase-lock loop combined systems,” Optics Letters., vol. 19, no. 1, pp. 4–6, 1994.
[62] A. C. Bordonalli, C. Walton, and A. J. Seeds, “High performance homodyne optical injection phase-lock loop using wide linewidth semi-conductor lasers,” IEEE Photonics Technology Letters, vol. 8, no. 9, pp.1217–1219, 1996.
[63] A. C. Bordonalli, C. Walton, and A. J. Seeds, “High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop,” IEEE J. Lightwave Technology, vol. 17, no. 2, pp. 328–342, Feb. 1999.
[64] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” in 2009 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1165–1168.
[65] A. S. Daryoush, T. Berceli, R. Saedi, P. R. Herczfeld, and A. Rosen, “Theory of subharmonic synchronization of nonlinear oscillators,” in 1989 IEEE MTT-S Int. Microwave Symp. Dig., pp. 735–738.
[66] X. Zhang, X. Zhou, and A. S. Daryoush, “A theoretical experimental study of the noise behavior of subharmonically injection and locked oscillators,” IEEE Trans. Microwave Theory and Tech., vol. 40, no. 5, pp. 895–902, May 1992.
[67] X. Zhang, X. Zhou, B. Aliener, and A. S. Daryoush, “A study of subharmonic injection locking for local oscillators,” IEEE Microwave and Guided Wave Letters, vol. 2, no. 3, pp. 97–99, March 1992.
[68] H. Ahmed, C. DeVries, and R. Mason, “A digitally tuned 1.1 GHz subharmonic injection-locked VCO in 0.18 um CMOS,” in Proc. 29th European Solid-State Circuits Conf., Estoril, Portugal, 2003, pp. 81–84.
[69] S. Forestier, P. Bouysse, R. Quere, A. Mallet, J. M. Nebus, and L. Lapierre, “Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-controlmethod,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 4, pp. 1132–1141, Apr. 2004.
[70] D. Junxiong, P. S. Gudem, L. E. Larson, D. F. Kimball, and P. M. Asbeck, “A SiGe PA with dual dynamic bias control and memoryless digital predistortion forWCDMA handset applications,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1210–1221, May 2006.
[71] J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, and T. Quach, “High efficiency CDMA RF power amplifier using dynamic envelope tracking technique,” in 2000 IEEE MTT-S Int. Microwave Symp. Dig., pp. 873–876.
[72] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. As-beck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 4, pp. 1244–1255, Apr. 2005.
[73] P. Reynaert and M. S. J. Steyaert, “A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2598–2608, Dec. 2005.
[74] A.W. Hietala, “A quad-band 8PSK/GMSK polar transceiver,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1133–1141, May 2006.
[75] L. R. Kahn, “Single sideband transmission by envelope elimination and restoration,” Proc. IRE, vol. 40, no. 7, pp. 803–806, July 1952.
[76] J.-K. Jau, Y.-A. Chen, S.-C. Hsiao, T.-S. Horng, and J.-Y. Li, “Highly efficient multimode RF transmitter using the hybrid quadrature polar modulation scheme,” in 2006 IEEE MTT-S Int. Microwave Symp. Dig., pp. 789–792.
[77] C.-J. Li, T.-S. Horng, J.-K. Jau, and J. Y. Li, “System design issues in a HQPM-based transmitter,” in 2007 IEEE MTT-S Int. Microwave Symp. Dig., pp. 77–80.
[78] J.-K. Jau, “Study and implementation of highly efficient RF transmitter using hybrid quadrature polar modulation scheme,” Ph. D. dissertation, Dept. Elect. Eng., National Sun Yat-Sen Univ., Kaohsiung, Taiwan, 2006.
[79] WiMAX Concepts and RF Measurements, IEEE 802.16-2004 WiMAX PHY layer operation and measurements Application Note, Agilent Technologies Inc., CA, 2005.
[80] B. Bisla, R. Eline, and L. M. F.-Neto, “RF system and circuit challenges for WiMAX,” Intel Technology Journal, vol. 8, pp. 189–200, Aug., 2004.
[81] C. Masse and Q. Luu, A 2.xGHz WiMAX Direct Conversion Transmitter Application Note, Analog Devices Inc., Norwood, MA, 2006.
[82] 3GPP2 C.S0024, ver. 2.1: ‘cdma2000 high rate packet data air interface specification’. 2001
[83] 3GPP2 C.S0006, ver. 1.0: ‘Analog signaling standard for cdma2000 spread spectrum systems’. 2002
[84] X. Lai and J. Roychowdhury, “Capturing oscillator injection locking via nonlinear phase-domain macromodels,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 9, pp. 2251–2261, Sep. 2004.
[85] X. Lai and J. Roychowdhury, “Automated oscillator macromodelling techniques for capturing amplitude variations and injection locking,” in Proc. IEEE/ACM Int. Conf. Computer Aided Design, San Jose, CA, 2004, pp. 687–694.
[86] X. Lai and J. Roychowdhury, “Analytical equations for predicting injection locking in LC and ring oscillators,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, 2005, pp. 461–464.
[87] S. Srivastava, X. Lai, and J. Roychowdhury, “Nonlinear phase macromodel based simulation/design of PLLs with superharmonically locked dividers,” in Proc. IEEE Custom Integrated Circuits Conf., San Jose, CA, 2006, pp. 350–352.
[88] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques. New York: Wiley, 1990, Chapter 6.
[89] S. Haykin, Communication Systems, 4th ed. New York: Wiley, 2001.
[90] R. E. Best, Phase-Locked Loops: Theory, Design, and Applications, 2nd ed. New York: McGraw-Hill, 1993.
[91] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.
[92] M. J. E. Golay, “Normalized equations of the regenerative oscillator–noise, phase-locking, and pulling,” Proc. IEEE, vol. 52, no. 11, pp. 1311–1330, Nov. 1964.
[93] M. J. E. Golay, “Comments on ‘Normalized equations of the regenerative oscillator–noise, phase-locking, and pulling’,” Proc. IEEE, vol. 53, no. 5, pp. 518–519, May 1965.
[94] M. E. Hines, J. R. Collinet, and J. G. Ondria, “FM noise suppression of an injection phase-locked oscillator,” IEEE Trans. Microwave Theory and Tech., vol. MTT-16, no. 9, pp. 738–742, Sep. 1968.
[95] K. Kurokawa, “Noise in synchronized oscillators,” IEEE Trans. Microwave Theory and Tech., vol. MTT-16, no. 4, pp. 234–240, Apr. 1968.
[96] T. Sugiura and S. Sugimoto, “FM noise reduction of Gunn-effect oscillators by injection locking,” Proc. IEEE (Letters), vol. 57, no. 1, pp. 77–78, Jan. 1969.
[97] J. R. Ashley, “Measured FM noise reduction by injection phase locking,” Proc. IEEE (Letters), vol. 58, no. 1, pp. 155–157, Jan. 1970.
[98] K. F. Schünemann and K. Behm, “Nonlinear noise theory for synchronized oscillators,” IEEE Trans. Microwave Theory and Tech., vol. MTT-27, no. 5, pp. 452–458, Apr. 1979.
[99] J. C. Nallatamby, M. Prigent, J. C. Sarkissian, R. Quere, and J. Obregon, “A new approach to nonlinear analysis of noise behavior of synchronized oscillators and analog-frequency dividers,” IEEE Trans. Microwave Theory and Tech., vol. 46, no. 8, pp. 1168–1171, Aug. 1998.
[100] “Spectrum policy task force report,” Federal Communications Commission, Washington, DC, ET Docket no. 02–115, 2002.
[101] “Unlicensed operation in the TV broadcast bands and additional spectrum for unlicensed devices below 900 MHz in the 3 GHz band,” Federal Communications Commission, Washington, DC, Notice of proposed rulemaking FCC 04–113, 2004.
[102] J. Mitola III and G. Q. Maguire Jr., “Cognitive radio: making software radios more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, Aug. 1999.
[103] S. M. Mishra, D. Cabric, C. Chang, D. Willkomm, B. Schewick, A. Wolisz, and R. W. Brodersen, “A real time cognitive radio testbed for physical and link layer experiments,” in Proc. 1st IEEE Int. New Frontier in Dynamic Spectrum Access Networks Symp., Baltimore, MD, 2005, pp. 562–567.
[104] A. Mayer .et al, “RF front-end architecture for cognitive radios,” in Proc. 18th Annu. Personal, Indoor and Mobile Radio Comm. Symp., Athens, Greece, 2007, pp. 1–5.
[105] T. Rapinoja, K. Stadius, L. Xu, S. Lindfors, R. Kaunisto, A. Pärssinen, and J. Ryynänen, “A digital frequency synthesizer for cognitive radio spectrum sensing applications,” in 2009 IEEE Radio Frequency and Integrated Circuits Symp. Dig., pp. 423–426.
[106] B. Ackland and I. Seskar, “High performance cognitive radio platform with integrated physical & network layer capabilities,” presented at the Berkeley Wireless Research Center Cognitive Radio Workshop, Berkeley, CA, Nov. 1, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code