Responsive image
博碩士論文 etd-0726110-215510 詳細資訊
Title page for etd-0726110-215510
論文名稱
Title
弧菌噬菌體φVP 及φVA增殖條件之研究
Study in the Propagation Conditions for Vibriophages φVP and φVA
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-04-06
繳交日期
Date of Submission
2010-07-26
關鍵字
Keywords
弧菌噬菌體、腸炎弧菌、溶藻弧菌
Vibriophage, Vibrio alginolyticus, Vibrio parahaemolyticus
統計
Statistics
本論文已被瀏覽 5722 次,被下載 0
The thesis/dissertation has been browsed 5722 times, has been downloaded 0 times.
中文摘要
本實驗室之前在水產養殖場中分離出17 株多重抗藥性菌株,其中達82% (14/17) 屬弧菌族群,在水產養殖業中弧菌為主要的微生物病原,會造成魚體體表潰瘍出血與腸胃道腫脹病徵,稱為弧菌症 (vibriosis),致死率最高為100%。為了利用噬菌體來殺死抗藥菌,本研究利用腸炎弧菌 (Vibrio parahaemolyticus) 與溶藻弧菌 (Vibrio alginolyticus) 篩選出兩株弧菌噬菌體 (vibriophage),腸炎弧菌噬菌體φVP2 與溶藻弧菌噬菌體φVA2。由電子顯微鏡觀察φVP2 為頭部略長的有尾噬菌體並具有6 條尾絲,而φVA2 具有一短尾部,頭部呈現二十面體。在基因體DNA 電泳中φVA2 與φVP2 可觀察到各具有一17.8K bp 的片段,而φVA2 DNA 能由限制酶酵素EcoR I 與Xba I作用,得到數個特定限制酶切割片段,推算其基因體大小約為40K bp。在宿主範圍中φVP2 能感染腸炎弧菌與溶藻弧菌,而φVA2 則只能感染溶藻弧菌。在噬菌體的熱穩定性分析中,φVA2 能存活於65°C以下,而φVP2 在63°C 下仍能存活。為生產大量的弧菌噬菌體在φVA2 增值生產中以隔夜培養宿主做為菌種,並立即以MOI= 10-6 感染噬菌體,以MSWYE 培養基做為營養來源,為最佳化的增殖條件。而增殖φVP2 時,除MOI 須提高至10-4 來立即感染隔夜宿主外,並培養在MSWYE 培養基中,就能增值最多的弧菌噬菌體。
Abstract
Seventeen strains of multi drug-resistant strains were isolated from aquaculture farms in previous study, and 82% (14/17) of these strains are belong to Vibrio species, which is one of the major pathogens in the aquaculture farms. Vibrio disease (vibriosis) which caused by the Vibrio will cause the fish skin ulcer with bleeding and gastrointestinal symptoms such as swelling. The highest mortality rate of Vibrio infected marine fish is up to 100%. Two vibriophages, Vibrio parahaemolyticus vibriophage φVP2 and Vibrio alginolyticus vibriophage φVA2, were isolated from aquaculture environments in this study. The morphology of vibriophage was examined by electron microscopy. The φVP2 phage has an oval head with a tail and six tail fibers. As φVA2, an icosarhedral head with an short tail is observed. In the DNA electrophoresis analysis, a fragment at 17.8k bp was observed in both φVA2 and φVP2 sample. Restriction endonuclease digestion pattern revealed that the φVA2 vibriophage DNA can be cut into various small size of DNA fragments by EcoR I and Xba I endonuclease. In the host-range analysis, φVP2 can infect Vibrio parahaemolyticus and Vibrio alginolyticus, while φVA2 and φVP2 cannot infect other Vibrio spp., Pasteurella, E. Coli, and antibiotic-resistant bacteria isolated from aquaculture farms. φVA2 and φVP2 can survive at the temperature below 65°C and 63°C, respectively. To obtain the maximum proliferation of vibriophage, different conditions were tested, including infection time point, host bacteria age, MOI (multiplicity of infection) and various mediums. Vibriophage φVA2 was proliferated under following conditions: (1) phage was add to the medium with host seed together; (2) the overnight cultured host bacteria was used as seed; (3) the host cells were infected at MOI= 10-6; (4) MSWYE media was used as culture media. Vibriophage φVP2 was proliferated following φVA2 conditions but MOI values was 10-4.
目次 Table of Contents
謝誌................................................................................................... I
摘要................................................................................................... II
Abstract.............................................................................................. II
目錄................................................................................................... IV
表目錄............................................................................................... VI
圖目錄............................................................................................... VII
壹、前言
一、水產養殖的威脅.................................................................................. 1
二、弧菌引起魚類疾病.............................................................................. 2
三、噬菌體的簡介...................................................................................... 11
1. 噬菌體的分類................................................................................ 15
2. 噬菌體的生命週期........................................................................ 19
四、弧菌噬菌體相關研究.......................................................................... 21
五、研究目的............................................................................................. 29
貳、材料與方法
一、樣品採集.............................................................................................. 30
二、宿主細菌培養...................................................................................... 30
三、特殊培養基TCBS 培養基檢測........................................................ 31
四、噬菌體的篩選..................................................................................... 31
五、噬菌體效價之測定 (phage titer)....................................................... 32
六、單株噬菌體的分離............................................................................. 33
七、噬菌體與菌種保存法......................................................................... 33
八、弧菌生長曲線測試.............................................................................. 34
九、宿主溶裂曲線測試............................................................................. 34
十、噬菌體感染時間對弧菌噬菌體增殖的影響..................................... 34
十一、宿主菌齡對弧菌噬菌體增殖的影響.............................................. 35
十二、Multiplicity of infection (MOI) 對弧菌噬菌體增殖的影響......... 36
十三、培養基對弧菌噬菌體增殖的影響................................................. 36
十四、噬菌體之增殖 (amplification)....................................................... 37
十五、NaCl-PEG8000 噬菌體純化方法................................................... 37
十六、PEG/NaCl 噬菌體純化方法........................................................... 38
十七、超高速離心噬菌體純化方法.......................................................... 38
十八、流式光度計分析.............................................................................. 39
十九、穿透式電子顯微鏡觀察負染色弧菌噬菌體樣本......................... 40
二十、噬菌體宿主交叉測試..................................................................... 40
二十一、噬菌體與宿主熱穩定性分析...................................................... 41
二十二、噬菌體核酸萃取.......................................................................... 41
二十三、DNA 電泳製備與分析(DNA agarose gel electrophoresis)...... 42
二十四、噬菌體與宿主熱穩定性分析...................................................... 43
二十五、最大可能菌數檢測法 (Most Probable Number, MPN method) 43
參、結果
一、篩選噬菌體........................................................................................... 45
二、弧菌噬菌體 (vibriophage) 型態分析................................................ 47
三、弧菌噬菌體基因體 DNA (genomic DNA) 分析................................ 48
四、弧菌噬菌體之宿主範圍....................................................................... 49
五、弧菌噬菌體增殖條件.......................................................................... 50
六、弧菌噬菌體純化方式.......................................................................... 58
七、弧菌噬菌體與宿主之熱穩定性.......................................................... 60
肆、討論
一、弧菌噬菌體的篩選.............................................................................. 63
二、弧菌噬菌體分類.................................................................................. 64
三、弧菌噬菌體的增殖最佳化.................................................................. 67
四、弧菌噬菌體的純化.............................................................................. 71
五、弧菌噬菌體熱穩定性.......................................................................... 73
六、未來展望.............................................................................................. 74
伍、參考文獻.................................................................................... 75
陸、附錄
附錄A 噬菌體分科總表............................................................................. 121
附錄B MPN index and 95% confidence limits for various combinations
of positive results when five tubes are used per dilution (10 ml,
1ml, 0.1 ml)...................................................................................... 122
參考文獻 References
王筱婷。2003。石斑皮膚菌Aeromonas hydrophila 之特性研究。國
中山大學海洋生物科技暨資源研究所,碩士論文。
吳俊德。1997。出血性紅斑病弧菌 (Vibrio anguillarum) 及腸炎
弧菌 (Vibrio Parahaemolyticus) 噬菌體之研究。國立中山
大學海洋資源研究所,碩士論文。
沙志一。2009。行政院農業委員會漁業署2008 年年報。行政院農
業委員會漁業署。
張舒盈。2003。十二種克雷伯氏肺炎桿菌之噬菌體的分離與特性。
中國醫藥學院醫學研究所,碩士論文。
蕭靜伶。2007。水產養殖場分離菌之抗四環素基因。國立中山大學
海洋生物科技暨資源研究所,碩士論文。
Ackermann H.W. (2007). 5500 Phages examined in the electron
microscope. Arch Virol. 152(2):227-43.
Almeida A., Cunha A., Gomes N.C., Alves E., Costa L., Faustino
M.A. (2009). Phage therapy and photodynamic therapy: low
environmental impact approaches to inactivate microorganisms in
fish farming plants. Mar Drugs. 7(3), 268-313.
Amaro C, Biosca E.G., Esteve C, Fouz B., Toranzo A.E. (1992).
Comparative study of phenotypic and virulence properties in
Vibrio vulnificus biotypes 1 and 2 obtained from a European eel
farm experiencing mortahties. Diseases of Aquatic Organisms. 13,
29-35.
Angulo L., Lopez J.E., Vicente J.A., Saborido A.M. (1994).
Haemorrhagic areas in the mouth of farmed turbot, Scophthalmus
maximus (L.). Journal of Fish Diseases. 17, 163-169.
Austin B. and Austin D. A. (2007). Bacterial fish pathogens diseases
of farmed and wild fish. Fourth edition. Praxis publishing. ch4,
136-147.
Austin B., Stobie M., Robertson P.A.W., Glass H.G., Stark J.R.,
Mudarris M. (1993). Vibrio alginolyticus: The cause of gill
disease leading to progressive low-level mortahties among
juvenile turbot, Scophthalmus maximus L., in a Scottish aquarium.
Journal of Fish Diseases. 16, 277-280.
Azzazy H.M., Highsmith W.E. Jr. (2002). Phage display technology:
clinical applications and recent innovations. Clin Biochem. 35(6),
425-45.
Balebona M.C., Zorrilla I., Morinigo M.A., Borrego J.J. (1998).
Survey of bacterial pathogens affecting farmed gilt-head sea bream
(Sparus aurata L.) in southwestern Spain from 1990 to 1996.
Aquaculture. 166, 19-35.
Baross J.A., Liston J., Morita R.Y. (1978a). Ecological relationship
between Vibrio parahaemolyticus and agar-digesting vibrios as
evidenced by bacteriophage susceptibility patterns. Appl Environ
Microbiol. 36(3), 500-5.
Baross J.A., Liston J., Morita R.Y. (1978b). Incidence of Vibrio
parahaemolyticus bacteriophages and other Vibrio bacteriophages
in marine samples. Appl Environ Microbiol. 36(3), 492-9.
Benediktsdottir E., Helgason S., Sigurjonsdottir H. (1998). Vibrio
spp. isolated from salmonids with shallow skin lesions and reared
at low temperature. Journal of Fish Diseases. 21, 19-28.
Benediktsdottir E., Verdonck L., Sproer C, Helgason S., Swings J.
(2000). Characterization of Vibrio viscosus and Vibrio wodanis
isolated from different geographical locations: A proposal for re-classification of Vibrio viscosus as Moritella viscosa comb.
nov. International Journal of Systematic and Evolutionary
Microbiology. 50, 479-488.
Bernhardt T.G., Wang I.N., Struck D.K., Young R. (2002). Breaking
free: "protein antibiotics" and phage lysis. Res Microbiol. 153(8),
493-501.
Casjens S.R. (2008). Diversity among the tailed-bacteriophages that
infect the Enterobacteriaceae. Res Microbiol. 159(5), 340-8.
Chang B., Taniguchi H., Miyamoto H., Yoshida S. (1998).
Filamentous bacteriophages of Vibrio parahaemolyticus as a
possible clue to genetic transmission. J Bacteriol. 180(19),
5094-101.
Chang B., Yoshida S., Miyamoto H., Ogawa M., Horikawa K.,
Ogata K., Nishibuchi M., Taniguchi H. (2000). A unique and
common restriction fragment pattern of the nucleotide sequences
homologous to the genome of vf33, a filamentous bacteriophage,
in pandemic strains of Vibrio parahaemolyticus O3:K6 O4:K68,
and O1:K untypeable. FEMS Microbiol Lett. 192(2), 231-6.
Chibani-Chennoufi S., Sidoti J., Bruttin A., Kutter E., Sarker S.,
Brüssow H. (2004). In vitro and in vivo bacteriolytic activities of
Escherichia coli phages: implications for phage therapy.
Antimicrob Agents Chemother. 48(7), 2558-69.
Colwell R. R. and Grimes D. J. (1984). Vibrio diseases of marine fish
populations. Helgolander Meeresunters. 37, 265-287.
Comeau A.M., Buenaventura E., Suttle C.A. (2005). A persistent,
productive, and seasonally dynamic vibriophage population within
Pacific oysters (Crassostrea gigas). Appl Environ Microbiol.
71(9), 5324-31.
Comeau A.M., Chan A.M., Suttle C.A. (2006). Genetic richness of
vibriophages isolated in a coastal environment. Environ Microbiol.
8(7), 1164-76.
Comeau A.M., Te´tart F., Trojet S.N., Pre`re M-F., Krisch H.M.
(2007). Phage-Antibiotic Synergy (PAS): b-Lactam and Quinolone
Antibiotics Stimulate Virulent Phage Growth. PLoS ONE. 2(8),
e799.
Crothers-Stomps C., Høj L., Bourne D.G., Hall M.R., Owens L.
(2009). Isolation of lytic bacteriophage against Vibrio harveyi. J
Appl Microbiol. 1-7.
De Haan P.G., Winkler K.C. (1955). Phage reproduction in relation to
bacterial growth rate. Antonie Van Leeuwenhoek. 21(1), 103-12.
Defoirdt T., Crab R., Wood T.K., Sorgeloos P., Verstraete W.,
Bossier P. (2006). Quorum sensing-disrupting brominated
furanones protect the gnotobiotic brine shrimp Artemia
franciscana from pathogenic Vibrio harveyi, Vibrio campbellii,
and Vibrio parahaemolyticus isolates. Appl Environ Microbiol.
72(9), 6419-23.
Delbrück M. (1940). The growth of bacteriophage and lysis of the
host. J Gen Physiol. 23(5), 643-660.
Díez B., Antón J., Guixa-Boixereu N., Pedrós-Alió C.,
Rodríguez-Valera F. (2000). Pulsed-field gel electrophoresis
analysis of virus assemblages present in a hypersaline
environment. Int Microbiol. 3(3), 159-64.
Diggles B.K., Carson J., Hine P.M., Hickman R.W., Tait M.J.
(2000). Vibrio species associated with mortahties in
hatchery-reared turbot (Colistium nudipinnis) and brill (C.
guntheri) in New Zealand. Aquaculture. 183, 1-12.
Egidius E., Andersen K., Causen E., Raa J. (1981). Cold water
vibriosis or "Hitra disease" in Norwegian salmonid farming.
Journal of Fish Diseases. 4, 353-354.
Egidius E., Wiik R., Andersen K., Hoff K.A., Hjeltnes B. (1986).
Vibrio salmonicida sp. nov., a new fish pathogen. International
Journal of Systematic Bacteriology. 36, 518-520.
Ellis E.L., Delbrück M. (1939). The growth of bacteriophage. J Gen
Physiol. 22(3), 365-384.
Esteve C, Amaro C, Garay E., Santos Y., Toranzo A.E. (1995).
Pathogenicity of live bacteria and extracellular products of motile
Aeromonas isolated from eels. Journal of Applied Bacteriology.
78, 555-562.
Fouz B., Larsen J.L., Amaro C. (2006). Vibrio vulnificus serovar A:
An emerging pathogen in European anguilliculture. Journal of
Fish Diseases. 29, 285-291.
Gauger E., Smolowitz R., Uhlinger K., Casey J., Gomez-Chiarri M.
(2006). Vibrio harveyi and other bacterial pathogens in cultured
summer flounder, Paralichthys dentatus. Aquaculture. 260, 10-20.
Grimes D.J., Gruber S.H., May E.B. (1985). Experimental infection
of lemon sharks, Negaprion brevirostris (Poey), with Vibrio
species. Journal of Fish Diseases. 8, 173-180.
Harbell S.O., Hodgins H.O., Schiewe M.H. (1979). Studies on the
pathology of vibriosis in coho salmon (Oncorhynchus kisutch).
Journal of Fish Diseases. 2, 527-535.
Hardies S.C., Comeau A.M., Serwer P., Suttle C.A. (2003). The
complete sequence of marine bacteriophage VpV262 infecting
vibrio parahaemolyticus indicates that an ancestral component of a
T7 viral supergroup is widespread in the marine environment. Virology. 310(2), 359-71.
Ishimaru K., Akagawa-Matsushita M., Muroga K. (1996). Vibrio
ichthyoenteri sp. nov., a pathogen of Japaneses flounder
(Paralichthys olivaceus). International Journal of Systematic
Bacteriology. 46, 155-159.
Jensen S., Samuelsen O.B., Andersen K., Torkildsen L., Lambert
C, Choquet G., Paillard C., Bergh O. (2003). Characterization of
strains of Vibrio splendidus and V. tapetis isolated from corkwing
wrasse Symphodus melops suff'ering vibriosis. Diseases of
Aquatic Organisms. 53, 25-31.
Ju J.W., Moon B.G. (1997). Characterization About Vibrio
alginolyticus Phage Isolated from Marine Products. J Korean Soc
Microbiol. 32(1), 81-90.
Kiiyukia C, Nakajima A., Nakai T., Muroga K., Kawakami H.,
Hashimoto H. (1992). Vibrio cholerae non-01 isolated from ayu
fish (Plecoglossus altivelis) in Japan. Applied and Environmental
Microbiology. 58, 3078-3082.
Kim D.-H., Han H.-J., Kim S.-M., Lee D.-C., Park S.-I. (2004).
Bacterial enteritis and the development of the larval digestive tract
in olive flounder, Paralichthys olivaceus (Temminck & Schlegel).
Journal of Fish Diseases. 27, 497-505.
Koga T., Toyoshima S., Kawata T. (1982). Morphological varieties
and host ranges of Vibrio parahaemolyticus bacteriophages
isolated from seawater. Appl Environ Microbiol. 44(2), 466-70.
Lamas J., Anadon R., Devesa S., Toranzo A.E. (1990). Visceral
neoplasia and epidermal papillomas in cultured turbot
Scophthalmus maximus. Diseases of Aquatic Organisms. 8,
179-187.
Lauryl D. and Broth T. (1994). 9221 Multiple-Tube Fermentation
Technique for Members of the Coliform Group. 20th edition.
Standard methods for the Examination of wastewater. 9-48-9-49.
Lehmicke L. G., Williams R. T., Crawford R. L. (1979).
14C-most-probable-number method for enumeration of active
heterotrophic microorganisms in natural waters. Appl Environ
Microbiol. 38(4), 644–649.
Lei Q., Yin-Geng W., Zheng Z., Shao-Li Y. (2006). The first report
on fin rot disease of cultured turbot Scophthalmus maximus in
China. Journal of Aquatic Animal Health. 18, 83-89.
Levisohn R., Moreland J., Nealson K.H. (1987). Isolation and
Characterization of a Generalized Transducing Phage for the
Marine Luminous Bacterium Vibrio fischeri MJ-1. Journal of
General Microbiology. 133, 1577-1582.
Li G., Zhao D., Huang L., Sun J., Gao D., Wang H., Tan Y., Liang
L. (2006). Identification and phylogenetic analysis of Vibrio
vulnificus isolated from diseased Trachinotus ovatus in cage
mariculture. Aquaculture. 261, 17-25.
Liao I.C., Huang T.S., Tsai W.S., Hsueh C.M., Chang S.L., Leano
E.M. (2004). Cobia culture in Taiwan: current status and
problems. Aquaculture. 237, 155-165.
Liao W., Song S., Sun F., Jia Y., Zeng W., Pang Y. (2008). Isolation,
characterization and genome sequencing of phage MZTP02 from
Bacillus thuringiensis MZ1. Arch Virol. 153(10), 1855-65.
Lin Y., Chen K., Chen G., Hu H. (1993). The isolation of Vibrio
alginolyticus bacteriophage. Wei Sheng Wu Xue Bao. 33(4), 285-9.
Liu H., Izumi S., Wakabayashi H. (2001). Detection of
Flavobacterium psychrophilum in various organs of ayu Plecoglossus altivelis by in situ hybridization. Fish Pathology. 36,
7-11.
Lu T.K., Collins J.J. (2009). Engineered bacteriophage targeting gene
networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U
S A. 106(12), 4629-34.
Lunder T., Evensen O., Holstad G., Hastein T. (1995). "Winter
ulcer" in the Atlantic salmon Salmo salar. Pathological and
bacteriological investigations and transmission experiments.
Diseases of Aquatic Organisms. 23(1), 39-49.
Lupiani B., Dopazo C.P., Ledo A., Fouz B., Barja J.L., Hetrick,
F.M., Toranzo A.E. (1989). New syndrome of mixed bacterial
and viral etiology in cultured turbot Scophthalmus maximus.
Journal of Aquatic Animal Health. 1, 197-204.
Maruyama Y. (1958). Interpretation of the antiviral activity of
virustatic agents in a phage/bacterium system. J. Elocbemlslry.
45(3), 177-184.
Miller E.S., Heidelberg J.F., Eisen J.A., Nelson W.C., Durkin A.S.,
Ciecko A., Feldblyum T.V., White O., Paulsen I.T., Nierman
W.C., Lee J., Szczypinski B., Fraser C.M. (2003). Complete
genome sequence of the broad-host-range vibriophage KVP40:
comparative genomics of a T4-related bacteriophage. J Bacteriol.
185(17), 5220-33.
Molina-Aja A., Garcia-Gasca A., Abreu-Grobois A., Bolan-Mejia
C., Roque A., Gomez-Gil B. (2002). Plasmid profiling and
antibiotic resistance of Vibrio strains isolated from cultured
penaeid shrimp. FEMS Microbiol Lett. 213(1), 7-12.
Morris JG Jr. (2003). Cholera and other types of vibriosis: a story of
human pandemics and oysters on the half shell. Clin Infect Dis. 37(2), 272-80.
Myhr E., Larsen J.L., Lillehaug A., Gudding R., Heum M., Hastein
T. (1991). Characterization of Vibrio anguillarum and closely
related species isolated from farmed fish in Norway. Applied and
Environmental Microbiology. 57, 2156-2151.
Nagasaki K. and Yamaguchi M. (1997). Isolation of a virus
infectious to the harmful bloom causing microalga Heterosigma
akashiwo (Raphidophyceae). Aquat Microb Ecol. 13, 135-140.
Nair G.B., Ramamurthy T., Bhattacharya S.K., Dutta B., Takeda
Y., Sack D.A. (2007). Global dissemination of Vibrio
parahaemolyticus serotype O3:K6 and its serovariants. Clin
Microbiol Rev., 20(1), 39-48.
Nakasone N., Ikema M., Higa N., Yamashiro T., Iwanaga M. (1999).
A filamentous phage of Vibrio parahaemolyticus O3:K6 isolated in
Laos. Microbiol Immunol. 43(4), 385-8.
Nasu H., Iida T., Sugahara T., Yamaichi Y., Park KS., Yokoyama
K., Makino K., Shinagawa H., Honda T. (2000). A filamentous
phage associated with recent pandemic Vibrio parahaemolyticus
O3:K6 strains. J Clin Microbiol. 38(6), 2156-61.
Oakey H.J., Cullen B.R, Owens L. (2002). The complete nucleotide
sequence of the Vibrio harveyi bacteriophage VHML. J Appl
Microbiol. 93(6), 1089-98.
Pickard D., Thomson N.R., Baker S., Wain J., Pardo M., Goulding
D., Hamlin N., Choudhary J., Threfall J., Dougan G. (2008).
Molecular characterization of the Salmonella enterica serovar
Typhi Vi-typing bacteriophage E1. J Bacteriol. 190(7), 2580-7.
Piekarowicz A., Kłyz A., Majchrzak M., Adamczyk-Popławska M.,
Maugel T.K., Stein D.C. (2007). Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and
visualization of productive bacteriophage. BMC Microbiol. 5,
7:66.
Rajan P.R., Lopez C., Lin J.H.Y., Yang H.L. (2001). Vibrio
alginolyticus infection in cobia (Rachycentron canadum) cultured
in Taiwan. Bull. Eur. Ass. Fish Pathol. 21(6), 228-234.
Ransom D.P., Lannan C.N., Rohovec J.S., Fryer J.L. (1984).
Comparison of histopathology caused by Vibrio anguillarum and
Vibrio ordalii and three species of Pacific salmon. Journal of Fish
Diseases. 7, 107-115.
Salte R., Rorvik K.-A., Reed E., Norberg K. (1994). Winter ulcers of
the skin in Atlantic salmon, Salmo salar L.: Pathogenesis and
possible aetiology. Journal of Fish Diseases. 17, 661-665.
Sambrook J. and Russell. (2001). Molecular cloning a laboratory
manual. Third edition. Cold spring laboratory press. ch2, ch3,
2.1-3.49.
Sambrook J., Fritsch E.F., Maniatis T. (1989). Molecular cloning a
laboratory manual. Second edition. Cold spring laboratory press.
ch2, 60-93.
Seguritan V., Feng I.W., Rohwer F., Swift M., Segall A.M. (2003).
Genome sequences of two closely related Vibrio parahaemolyticus
phages, VP16T and VP16C. J Bacteriol. 185(21), 6434-47.
Sen A. and Ghosh A.N. (2005). New Vibrio cholerae O1 biotype
ElTor bacteriophages. Virol J. 2, 28.
Shao Z.J. (2001). Aquaculture pharmaceuticals and biologicals:
current perspectives and future possibilities. Adv Drug Delivery
Rev. 50(3), 229-43.
Skurnik M. and Strauch E. (2006). Phage therapy: facts and fiction.
Int J Med Microbiol. 296(1), 5-14.
Smith L.S., Krueger A.P. (1954). Characteristics of a new
vibrio-bacteriophage system. J Gen Physiol. 38(2), 161-8.
Sulakvelidze A., Alavidze Z., Morris J.G. Jr. (2001). Bacteriophage
therapy. Antimicrob Agents Chemother. 45(3), 649-59.
Sun J., Ye D., Kochel A., Jost G. (2008). Isolation and physiological
characteristics of lytic bacteriophages of Vibrio. Wei Sheng Wu
Xue Bao. 48(6), 780-4.
Suttle C.A. (1993). Enumeration and isolation of viruses. In Handbook
of methods in aquatic microbial ecology. ch 15, 121-134. Edited
by Kemp P.F., Sherr B.F., Sferr E.B., Cole J.J. Lewis publishers.
Suttle C.A. (2005). Viruses in the sea. Nature. 437(7057), 356-61.
Suttle C.A. (2007). Marine viruses-major players in the global
ecosystem. Nat Rev Microbiol. 5(10), 801-12.
Tétart F., Repoila F., Monod C., Krisch H.M. (1996). Bacteriophage
T4 host range is expanded by duplications of a small domain of
the tail fiber adhesin. J Mol Biol. 258(5), 726-31.
Thompson F.L., Hoste B., Vandemeulebroecke K., Engelbeen K.,
Denys R., Swings J. (2002). Vibrio trachuri Iwamoto et al. 1995
is a junior synonym of Vibrio harveyi (Johnson & Shunk 1936)
Baumann et al. 1981. International Journal of Systematic and
Evolutionary Microbiology. 52, 973-976.
Thomson R., Macpherson H.L., Riaza A., Birkbeck T.H. (2005).
Vibrio splendidus type 1 as a cause of mortalities in
hatchery-reared larval turbot, Scophthalmus maximus (L.).
Journal of Applied Microbiology. 99, 243-250.
Toranzo Alicia E., Magarinos Beatriz, Romalde Jesus L. (2005). A
review of the main bacterial fish diseases in mariculture systems.
Aquaculture. 246, 37– 61.
Ulitzur S. (1974). Induction of swarming in Vibrio parahaemolyticus.
Arch Microbiol. 101(4), 357-63.
Villamil L., Figueras A., Toranzo A.E., Planas M., Novoa B. (2003).
Isolation of a highly pathogenic Vibrio pelagius strain associated
with mass mortahties of turbot, Scophthalmus maximus (L.) larvae.
Journal of Fish Diseases. 26, 293-303.
Wagner P.L. and Waldor M.K. (2002). Bacteriophage control of
bacterial virulence. Infect Immun. 70(8), 3985-93.
Yii K.-C, Yang T.I., Lee K.-K. (1997). Isolation and characterization
of Vibrio carchariae, a causative agent of gastroenteritis in the
groupers, Epinephelus coioides. Current Microbiology. 25,
109-115.
Yoon S.O., Ju S.A., Heo M.S., Jung C.R., Ju J.W. (1999).
Characterization of a Vibrio parahaemolyticus Phage Isolated
from Marine. J Korean Soc Microbiol. 34(5), 423-433.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.28.78
論文開放下載的時間是 校外不公開

Your IP address is 18.190.28.78
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code