Responsive image
博碩士論文 etd-0727100-174134 詳細資訊
Title page for etd-0727100-174134
論文名稱
Title
渦輪分子真空幫浦葉片設計參數分析
An Analysis on the Blade Design Parameters of Turbo Molecular Pumps
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-03
繳交日期
Date of Submission
2000-07-27
關鍵字
Keywords
轉子、蒙地卡羅法、渦輪分子真空幫浦
Turbo Molecular Pump, Monte Carlo Method, Roter
統計
Statistics
本論文已被瀏覽 5786 次,被下載 9637
The thesis/dissertation has been browsed 5786 times, has been downloaded 9637 times.
中文摘要
渦輪分子真空幫浦之葉片處於稀薄介質的分子流狀態時,具有穩定的抽氣功能,可以形成高真空狀態,唯其壓縮比及抽氣速率受轉子葉片形狀及轉速之影響很大。影響渦輪分子真空幫浦葉片設計之主要因素可以歸納有分子量、葉片角(Blade Angle)、葉片間距(Blade Spacing)、葉片弦長(Blade Chord)、葉片速度(Blade Velocity)等。本文針對上述各項主要因素,以蒙地卡羅法模擬並分析其對渦輪分子真空特性(抽氣速率曲線)之影響,將有助於渦輪分子真空幫浦之設計。
Abstract
Turbo Molecular pumps, abbreviated as TMP, can create a high vacuum environment for some special industries, especially the semiconductor and IC industries. The turbo blade design is one of the main technologies that affect the performance of a TMP. The object of this study is to investigate what kind of blade design parameters, e.g. blade angle, blade spacing, blade chord, blade velocity, etc., will affect the performance of TMP. It is hope that an analysis methodology of these parameters can be setup in the viewpoint of pumping rate curve. The results of this study will be useful for the design of TMP.
目次 Table of Contents

摘 要 I
Abstract II
目 錄 III
圖 目 錄 VI
表 目 錄 VIII
符號說明 IX

第 一 章 緒論 1
1-1研究背景及目的 1
1-2文獻回顧 3
1-3論文組織與章節 4

第 二 章 渦輪分子真空幫浦之抽氣原理 6
2-1 渦輪分子真空幫浦簡介 6
2-1-1 渦輪分子真空幫浦之主要構造 7
2-1-2 渦輪分子真空幫浦之定義 11
2-2 氣體分子特性 12
2-2-1巨觀與微觀 12
2-2-2 紐森數 13
2-2-3 渦輪分子真空幫浦之作用原理 14
2-2-4 分子速度分佈函數 19
2-3 本章結語 21

第 三 章 蒙地卡羅模擬 23
3-1 蒙地卡羅法 23
3-2 二維流場之模擬 24
3-2-1 起始流場設定 24
3-2-2 分子由邊界進入之問題 29
3-2-3 分子與葉片之碰撞 31
3-2-4 壓縮比與抽氣速率 33
3-2-5 二維流場模擬之結果 35
3-3 三維流場之模擬 41
3-3-1 起始流場設定 41
3-3-2 分子由邊界進入之問題 45
3-3-3 分子與葉片之碰撞 46
3-3-4 三維流場之模擬結果 48
3-4 多級葉片之模擬 51
3-4-1 多級葉片之壓縮比與抽氣速率 51
3-4-2 多級葉片之設計 55
3-4-3 多級葉片之模擬結果 56
3-5 本章結語 57

第 四 章 電腦模擬軟體之開發 58
4-1 軟體設計概念 58
4-2 計算葉片效能 59
4-2-1 設計概念 59
4-2-2 程式架構 60
4-3 多級葉片之排列設計 62
4-3-1 設計概念 62
4-3-2 程式架構 62
4-4 本章結語 64

第 五 章 結論與建議 66

附 錄 A 波次曼方程式 68

參 考 文 獻 71

參考文獻 References
1. Gaede, V. W., 1913, “Die Molekular Luftpumpe,” Annalen der Physik IV, 41, p342.
2. Kruger, C. H., 1960, The Axial-flow Compressor in the Free-molecular Range, MIT Ph. D. Dissertation, Cambridge, Massachusetts.
3. Kruger, C. H., and Shapiro, A. H., 1961, “The Axial-flow Compressor in the Free Molecular Range,” Rarefied Dynamics Gas Supplement, Academic Press, New York.
4. Becker, E., 1968, Gas Dynamics, Academic Press, New York.
5. Bird, G. A., 1976, Molecular Gas Dynamics, Clarendon Press, Oxford.
6. Bird, G. A., 1994, Molecular Gas Dynamics and The Direct Simulation of Gas Flows, Oxford University Press, New York.
7. Krieger, D., 1979, “Advances in Turbo Molecular Pump,” Solid State Technology, v12, p82.
8. Iida, S. and Kimura, O., 1974, “On Performance Improvement of Axial-Flow Molecular Pump,” Proc 6th Inter Vacuum Congress, p8.
9. Chu, J. G. and Hua, Z. Y., 1982, “The Statistical Theory of Turbomolecular Pumps,” Journal of Vacuum Society Technology, v20, n4, p1101.


10. Sekiya, 1990, “Study of the Performance of Turbomolecular Pumps,” Transactions of the Japan Society of Mechanical Engineers Part B, v56(525), p1400-1406.
11. Tu, J. Y., Zhu, Y., Wang, X. Z. and Pang, S. J., 1990, ”Optimization Design for Turbo Blades of a Hybrid-type Molecular Pump,” Vacuum, v 41, n7-9, p2070-2072.
12. Abe, T., Murakami, Y., Hikida, K., Ohsawa, H. and Hatas, S., 1990, “Development of Ceramic Turbo Molecular Pumps for Fusion Devices,” Vacuum, v41, 7-9, p1992-1994.
13. De Simon, M., 1990, “Influence of Clearance on Turbo Molecular Pump performance,” Vacuum, v41, 7-9, p2021-2024.
14. Hablanian, M. H., 1990, “Design and performance of Oil-free Pumps,” Vacuum, v41, 7-9, p1914-1818.
15. Rava, E., Dentis, G. and Psacharopulo, A., 1990, “Description and Theory of Turbo Molecular Pump Operation,” Vacuum, v41, 1-2, p240.
16. Kuhn, M. andAschmann, P., 1990, “Demands for Turbo Molecular Pumps in the Aluminum Etching Process,” Vacuum, v41, 7-9, p2028-2031.
17. Ba, D. C., Yang, N. H., Wang, X. D. Pang, S. J. and Zhu, Y., 1990, “Helical Channel Pumping Mechanism of Compound Molecular Pumps,” Vacuum, v41, 7-9, p2067-2069.
18. Bollhalder, M., 1990, “How to Select Turbo Molecular Pumps for Critical Applications,” Vacuum, v40, 1-2, p240.
19. Steinheimer, K. H. and Werlich, F., 1991, “Behaviour of Turbo Molecular pumps at High Pressure,” Vacuum, v42, 12, p749-752.
20. Tu, J., Zhu, Y. and Wang, X., 1991, “New Pumping Disk for Use in a Turbo Molecular Pump with Various Length Blades,” Vacuum, v42, 3, p199-200.
21. Panos, C. N., Antoniou, A. G., Valamontes, S. E., 1994, “The Helicoid Multi-Groove Vacuum Pump in Both Viscous and Molecular States,” Vacuum, v45, 8, p841-847.
22. Antoniou, A. G. and Valamonte, S. E., 1995, “The Turbomolecular Pump in Molecular State,” Vacuum, v46, n7, p709-715.
23. Panos, C. N., Antoniou, A. G., Valamontes, S. E., 1996, “The Helicoid Multi-Groove Molecular and the Turbomolecular Vacuum Pumps in Molecular State Under the Scope of Statistical Behavior of Moleculars,” Vacuum, v47, 11, p1361-1370.
24. Schneider, T. N., 1997, “Analysis of Three-Dimensional Single Stage and Two-Dimensional Multistage Models of Flows in Trbomolecular Pumps,” Vacuum, v48, n5, p449-453.
25. Katsimichas, 1996, “Calculation of Transmission Probabilities for a General Turbomolecular Pump Blade Passage”, The Pittsburgh Conference, p539, Chicago. Illinois, USA. March.
26. Duval, P., Raynaud, A. and Saulgeot, C., 1988, “The Molecular Drag Pump: Principle, Characteristics, and Applications,” Journal of Vacuum Society Technology, A6, 3, p1187-1191.
27. Henning, J., 1988, “Thirty Years of Turbomolecular Pumps: A Review and Recent Developments,” Journal of Vacuum Society Technology, A6, 3, p1196-1201.


28. Chu, J. G., 1988, “A New Hybird Molecular Pump with Large Throughput,” Journal of Vacuum Society Technology, A6, 3, p1202-1204.
29. Tu, J. Y., Yang, N. H., Pang, S. J. and Zu, Y., 1988, “A Fuether Exploration of Important Factor Affecting the Pumping Performance of Turbomolecular Pumps,” Journal of Vacuum Society Technology, A6, 4, p2535-2540.
30. Casaro, F. and levi, G., 1991, “Compression Ratio and Leakage Through Stages in Turbomolecular Pumps,” Journal of Vacuum Society Technology, A9, 3, p2508-2061.
31. Katsimichas, S., Goddard, A. J. H., Lewington, R., De Oliveira, C. R. E., 1995, “General Geometry Calculations of One-Stage Molecular Flow Transmission Probabilities for Turbomolecular Pumps,” Journal of Vacuum Society Technology, A13, 6, p2954-2961.
32. Konishi, N., Shibata, T., Ohmi, T., 1996, “Impurity Back Diffusion Through an Ultrahigh Vacuum Turbomolecular Pump Under Large Gas Throughput,” Journal of Vacuum Society Technology, A14, 5, p2958-2962.
33. 沃德切尼、戴維金凱德著,薛密譯,1991,數值數學和計算,復旦大學出版,上海。
34. 張達義,1982,”渦輪分子幫浦”,科儀新知,第四卷第四期,43-50頁。
35. 謝澤仁,1989,”超高真空系統的設計與建立”,科儀新知,第十卷第五期,32-52頁。

36. 周榮源、陳峰志、鄭鴻斌、張郁雯、高健薰,1997年6月,”渦輪真空幫浦之理論與發展”,科儀新知,第十八卷第六期,80-94頁。
37. 楊錦章,1990,”渦輪式分子真空幫浦”,真空科技期刊,第三卷第三期,56-65頁。
38. 楊錦章,1990,”渦輪式分子真空幫浦(續)”,真空科技期刊,第三卷第四期,29-41頁。
39. 吳金益,1994,”認識渦輪分子式幫浦-過去、現在與未來”,真空科技期刊,第七卷第二期,46-58頁。
40. 張郁雯、周榮源,1999,”渦輪分子幫浦單級二維流道之直接蒙地卡羅法計算”,真空科技期刊,第十二卷第一期,7-15頁。
41. 蘇青森,1980,真空科技,東華書局,台北。
42. 呂登復,1996年6月,實用真空技術,國興出版社,台北。
43. 賴怡利,1998,以直接模擬蒙地卡羅法分析微尺寸方管之流場現象,國立成功大學航空太空工程學系,碩士論文,台南。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code