博碩士論文 etd-0729113-135243 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 李杰(Chieh Li) 電子郵件信箱 E-mail 資料不公開
畢業系所 機械與機電工程學系研究所(Mechanical and Electro-Mechanical Engineering)
畢業學位 碩士(Master) 畢業時期 101學年第2學期
論文名稱(中) 大氣對流層內水蒸氣及二氧化碳之輻射吸收及溫度變化之影響
論文名稱(英) The Effect of the Water Vapor and Carbon Dioxide on the Radiation Absorption and Temperature Profile in Troposphere
檔案
  • etd-0729113-135243.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    紙本論文:不公開

    電子論文:使用者自訂權限:校內校外均不公開

    論文語文/頁數 中文/96
    統計 本論文已被瀏覽 5623 次,被下載 0 次
    摘要(中) 本研究主要探討垂直高度十公里內之對流層中水蒸氣及二氧化碳對大氣溫度及熱傳導之影響,根據真實溫度、壓力及濃度和溫室氣體輻射性質之關係有系統地提出大氣熱流模擬計算。
      為了簡化數值運算,本研究將大氣模型假設為單純熱傳導及輻射之一維系統。太陽將能量以紫外線(7%)、可見光(44%)、及紅外線(37%)傳入地球[3],部分短波除了可見光(0.4 μm 至0.7 μm)可穿透至對流層,大部分均在對流層頂(Tropopause)被吸收或反射,而在對流層內自地表所散發的長波熱輻射則多被溫室氣體如水蒸氣及二氧化碳等所吸收。被吸收之能量會上下兩向再次被輻射,而向下的輻射則會被地球表面所吸收,進而導致溫度的上升,故水蒸氣及二氧化碳為氣候暖化一個很重要的因素。其中二氧化碳之濃度更是逐年提升,相對於水蒸氣存在周期八至十天而言,其周期是以百年計算,故影響日益加劇,現今研究多將二氧化碳列為主要溫室氣體。
      本研究主要對水蒸氣及二氧化碳作模擬,其結果顯示此兩種氣體可造成大氣溫度差異達2℃~5℃,對於溫室效應而言有著顯著的影響。
    摘要(英) The work on this paper focus on the effect of the water vapor and carbon dioxide on the absorption of atmospheric radiation and the temperature within the troposphere (10km above the ground), which is based on the realistic temperature- and pressure- or concentration-dependent radiative properties. And for simplicity, this model is assumed one-dimension and only concerning about the conduction and radiation.
      As we know, the earth receives energy from the sun in the form UV, visible light, and near infrared radiation. And virtually all wave below 290 nm is absorbed at tropopause (top of the troposphere), and the wave between 300 nm and 800 nm is weakly absorbed and transmitted into the troposphere. Some of them are absorbed by the land and ocean, about 50%. Then the earth surface radiates the energy back in the form of far infrared thermal radiation, which is mostly absorbed by the atmosphere. Those absorbed far IR thermal radiation is re-radiated both upwards and downwards, and the downwards part is absorbed by the earth surface, which leads to a raising temperature. As a result, the influence of water vapor and carbon dioxide on global warming is growing day by day. Although the water vapor absorbs most of the infrared emitted by the ground, yet it got a shorter period about 8 days. Comparing to that, the concentration of carbon dioxide is increasing gradually since the industry revolution due to the anthropogenic emission like burning fossil fuel and deforestation .That’s why recent surveys of global warming all list Carbon dioxide as the main greenhouse gases.
    The computed results in this work quantitatively show that water vapor and carbon dioxide play an important role on affecting the temperature difference about 2 to 5 Celsius degree and therefore remind us of taking notice of the global warming.
    關鍵字(中)
  • 輻射熱傳導
  • 對流層
  • 溫室氣體
  • 溫室效應
  • 二氧化碳
  • 水蒸氣
  • 全球暖化
  • 吸收係數
  • 關鍵字(英)
  • water vapor
  • radiative heat transfer
  • absorption coefficient
  • carbon dioxide
  • greenhouse gases
  • climate change
  • greenhouse effects
  • global warming
  • 論文目次 目錄
    頁次
    論文審定書 i
    謝誌 ii
    中文摘要 iii
    Abstract iv
    目錄 vi
    圖次 viii
    符號說明 xi
    第一章 緒論 1
    1-1前言 1
    1-2文獻回顧 4
    1-3研究目的 5
    第二章 分析模型與假設 6
    2-1模型建立 6
    2-2空氣統御方程式 8
    2-3擴散方程式 11
    2-4 Exponential Wide Band Model 之吸收係數驗證 33
    第三章 結果與討論 41
    3-1 Picket Fence Model溫度模擬 41
    3-2 Exponential Wide Band Model溫度模擬 48
    3-3 Picket Fence Model 與Exponential Wide Band Model吸收係數比較 51
    第四章 結論 57
    附錄一 二氧化碳各波段總吸收量驗證數據 58
    附錄二 水蒸氣各波段之波數吸收係數驗證數據 66
    附錄三 Gauss’ Formula, Arbitrary Interval 77
    參考文獻 78
    參考文獻 [1] D.P.Martin, 1995. " Demonstrating the Greenhouse Effect : Illustrating Variations on an Atmospheric Phenomenon ," from Google Books:  http://books.google.com.tw/books?id=L4jtv2mX0iQC&pg=PA57&redir_esc=y#v=onepage&q&f=false
    [2] J. F. R. A. Rohde, 2007.Image:Atmospheric Absorption Bands. June 21,
       2008, fom the World Wide Web:
       http://wattsupwiththat.com/2008/06/21/a-window-on-water-vapor-and-
       planetary-temperature-part-2/
    [3] Oklahoma Climatological Survey,2005. Image:Vertical Structure of the Atmosphere, from Oklahoma Climatological Survey:
       http://okfirst.mesonet.org/train/meteorology/VertStructure2.html
    [4] From Encyclopaedia Britannica, 1997.Image:Atmospheric Pressure and
       Altitude.April 12, 2008, fom the World Wide Web:
       http://fiziknota.blogspot.com/2008/04/atmospheric-pressure-pressure-and-
       altitude.html
    [5] 24小時太陽輻射量。香港天文台。民國102年6月11號。取自http://www.hko.gov.hk/wxinfo/ts/display_element_solar_c.htm
    [6] J. B. Fourier, 1827 "Mémoire Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires,". Mémoires de l'Académie Royale des Sciences 7: 569–604.
    [7] J. Tyndall, 1861, "On the Absorption and Radiation of Heat by Gases and
       Vapours and on the Physical Connexion of Radiation, Absorption and
       Conduction-the Bakerian Lecture, " Phil. Mag., 22, 169-194.
    [8] G.Yamamoto, G.Onishi, 2009. "大気中の水蒸気による太陽輻射の吸收," Journal of the Meteorological Society of Japan. Ser. II, Vol. 29 (1951) No. 4 P 103-119
    [9] S. Arrhenius, 1896, "On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground," Philosophical Magazine ,41, 237-76
    [10] G. Plass, 1959, " Carbon Dioxide and the Climate," American Scientist, 98(1) 58-62.
    [11] Intergovernmental Panel on Climate Change (IPCC), 2007 "Fourth Assessment Report(AR4) Working Group I(WGI) "
    [12] 地球氣候系統(無日期)。中央氣象局。民102年6月25日,取自:
       http://www.cwb.gov.tw/
    [13] M. F. Modest, " Radiation Heat Transfer, " McGraw-Hill, 1993, New York.
    [14] D. K. Edwards, A.Balakrishnan, 1972, “Thermal radiation by combustion gases, " International Journal of Heat and Mass Transfer, Vol. 16, no. 1, pp. 25–40.
    [15] J. N. Howard, D.E.Burch, D. Williams 1955, " Infrared Transmission of Synthetic Atmospheres. II. Absorption by Carbon Dioxide, " JOSA, Vol. 46, Issue 4, pp. 237-241 .
    [16] G.Yamamoto, G.Onishi, 1949. "近赤外域に於ける水蒸氣の吸収係數," Journal of the Meteorological Society of Japan. Ser. II, Vol. 2, No. 9 P 269-276
    [17] G.Yamamoto, G.Onishi, 1949. "遠赤外域に於る水蒸氣の吸收係數," Journal of the Meteorological Society of Japan. Ser. II, Vol. 27, No. 2, P 52-64
    [18] Upper air data, university of Wyoming, Aug 15, 2011, http://weather.uwyo.edu/upperair/sounding.html
    口試委員
  • 陳寒濤 - 召集委員
  • 蕭飛賓 - 委員
  • 陳龍正 - 委員
  • 魏蓬生 - 指導教授
  • 口試日期 2013-07-26 繳交日期 2013-08-29

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫