Responsive image
博碩士論文 etd-0730107-151157 詳細資訊
Title page for etd-0730107-151157
論文名稱
Title
大面積規則陽極氧化鋁孔洞之研製與相關運用
Fabrication of Large Area Anodic Alumina Oxide (AAO) Arrays and Its Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-26
繳交日期
Date of Submission
2007-07-30
關鍵字
Keywords
光子晶體、陽極氧化鋁
Anodic Alumina Oxide, AAO, Photonic Crystal
統計
Statistics
本論文已被瀏覽 5688 次,被下載 5916
The thesis/dissertation has been browsed 5688 times, has been downloaded 5916 times.
中文摘要
我們利用高純度鋁片(99.9995%)進行陽極氧化處理得到奈米孔洞陣列,藉由控制陽極氧化處理的條件,可以改變陽極氧化鋁孔洞(AAO)陣列的規則性,且孔洞陣列的直徑與施加電壓以及電解液的不同有相當大的關連。將陽極氧化鋁孔洞(AAO)進行材料特性分析,在材料的發光特性上,光激螢光(Photoluminescence)光譜中看到,AAO的發光波段在藍光波段,大約是位於420nm左右,這邊我們使用He-Cd雷射當作激發光源。穿透光譜實驗部分,看到波段在400nm以前有很強的吸收。最後,以X-ray繞射光譜觀察AAO在回火以及未回火的結晶狀況,發現到兩者皆有繞射訊號(311)、(400)、(440)出現,與γ-Al2O3相似。
使用高濃度的磷酸、草酸混和液當作電解液,在高溫下進行陽極氧化處理,成功的製得高度規則排列的陽極氧化鋁孔洞(AAO),孔洞間距約為65nm。利用AAO當作製程mask方面的運用,以反應式離子蝕刻儀器,分別在Silicon、GaAs基板上進行圖案轉移,移除AAO之後基板上明顯有孔洞陣列生成。另外,使用鍍膜系統,成功的在選定的基板之上,製作出金屬奈米點陣列。AAO因具有規則孔洞排列特性,可以直接將其當作光子晶體使用,由PL實驗結果發現,AAO可以增加量子點的光萃取(light extraction),同時可以控制PL的發光波段。
Abstract
The AAO membrane with nanopore arrays were fabricated by anodizing highly pure aluminum foils (99.9995%) in electrolyte. Ordered array have been obtained under optimized anodizing condition, and pore diameter can be controlled by different anodic voltage and electrolyte. After we got such an ordered arrangement porous alumina array, the following analysis of the material optical properties were characterized. Photoluminescence measurements showed a strong PL peak in blue. The PL peak was 420nm excited by He-Cd laser. From the transmittance spectra, the results showed that material was transparent above 400nm. The XRD spectra of AAO without and with annealing, both showed the diffraction peaks of (311)、(400)、(440), corresponding to the γ-Al2O3 phase appear.
High ordered anodic porous alumina with holes interval 65nm was prepared in mixture solution of H3PO4 and H2SO4 under high temperature and high concentration. Through the use of porous anodic alumina masks, nanopore arrays were fabricated on Si、GaAs substrates by reactive ion etching. Also, metal nanodot arrays were formed through the AAO mask by evaporation. Thin AAO slabs also enhance the light extraction from the QDs, and control the PL emission wavelength.
目次 Table of Contents
第一章 論文簡介 1
1.1 研究動機 1
1.2 歷史背景 1

第二章 文獻回顧 4
2.1 陽極氧化鋁形成的機制 4
2.1.1 孔洞成核 4
2.1.2 孔洞的穩定成長 7
2.2 影響陽極氧化鋁成長的條件 8
2.2.1 外加電壓 8
2.2.2 陽極氧化處理時間 9
2.2.3 電解液濃度 9
2.2.4 陽極氧化處理的溫度 10
2.3 高規則性排列孔洞陣列 11
2.3.1 聚焦離子束 11
2.3.2利用原子力顯微鏡來製作奈米壓痕陣列 12
2.3.3 使用規則排列的SiC凸球面陣列模子壓印技術 12
2.4 陽極氧化鋁在不同基板上之應用 13
2.4.1 陽極氧化鋁在矽基板上之運用 13
2.4.2 陽極氧化鋁在玻璃上之運用 14
2.4.3 陽極氧化鋁在GaN上之研究 14
2.5 陽極氧化鋁的運用 15
2.5.1 AAO於光子晶體上之運用 16
2.5.2 奈米點(Nanodots) 16
2.5.3 奈米線(Nanowires)/奈米碳管(Nanotubes) 17
2.5.4 奈米環(Nanorings) 18
2.5.5 其他運用 19

第三章 實驗部份 20
3.1 陽極氧化處理技術 20
3.2 陽極氧化鋁孔洞黏貼在基板上的技術 22
3.2.1 Floating Method 22
3.2.2 Free Standing Anodic Alumina Membrane 23
3.3 以AAO為Mask製作奈米點與及圖案轉移 24
3.3.1 奈米點的製作 24
3.3.2 圖案轉移 25
3.4 AAO對於量子點磊晶層發光特性的影響 25
3.5 實驗儀器簡介 26
3.5.1 AAO實驗的治具 26
3.6 分析儀器 27
3.6.1 場發射電子顯微鏡 (FE-SEM) 27
3.6.2 原子力顯微鏡 (AFM) 28
3.6.3 X-ray diffraction (XRD) 29
3.6.4 光激螢光(Photoluminescence)原理 30

第四章 結果與討論 32
4.1 陽極氧化鋁的材料特性 32
4.2 大面積且規則排列的陽極氧化鋁孔洞陣列 35
4.3 不同溫度與施加電壓對於磷酸硫酸混合液之影響 40
4.4 陽極氧化鋁孔洞在mask方面的運用 45
4.4.1 金屬奈米點的製作 45
4.4.2 圖案轉移技術 52
4.5 AAO對於量子點磊晶層發光特性的影響 58
4.5.1 AAO band diagram模擬 59
4.5.2 C238量子點磊晶結構 61
4.5.3 C196量子點磊晶結構 67
4.5.4 C317量子點磊晶結構 71
4.5.5 C249量子點磊晶結構 75

第五章 結論 79
參考文獻 80
參考文獻 References
[1].O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,”Appl. Phys. Lett., Vol. 72, 1173 (1998).

[2].Y. Lei, K. S. Yeong,“Large-Scale Ordered Carbon Nanotube Arrays Initiated from Highly Ordered Catalyst Arrays on Silicon Substrate,”Chem. Mater., Vol. 16, 2757 (2004).

[3].F. Li, L Zhang, Lan Zhang, and Robert M. Metzger,“On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,”Chem. Mater., Vol. 10, 2470 (1998).

[4].O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,”Appl. Phys. Lett., Vol. 72, 1173 (1998).

[5].T. Valand, K. E. Heusler,“Reactions at the Oxide/Electrolyte Interface of Anodic Oxide Films on Aluminum,”J. Electronal. Chem., Vol. 149, 71 (1983).

[6].J. Phys. D: Appl. Phys. 29, 2534 (1996).

[7].G. E. Thompson,“Porous anodic alumina fabrication characterization and applications,”Thin solid films 297, 192 (1997).

[8].O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,”Appl. Phys. Lett., Vol. 72, 1173 (1998).

[9].Y. F. Mei, G. G. Siu,“Formation mechanism of alumina nanotubes and nanowires from highly ordered porous anodic alumina template,”J. Appl. Phys., Vol. 97, 034305 (2005).

[10].V. P. Parkhutik and V. I. Shershulsky, “Theoretical modeling of porous oxide growth on aluminum,” J. Phys. D: Appl. Phys. 25, 1258 (1992)

[11].Sunil Kumar Thamida and Hsueh-Chia Chang,“Nanoscale pore formation dynamics during aluminum anodization,”CHAOS, 12, 240-251 (2002).

[12].Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,”Jpn. J. Appl. Phys., Vol. 36, 7791 (1997).

[13].Mi Jung, Sun-il Mho,“Long range ordered CdTe/GaAs nanodot arrays grown as replica nanoporous alumina mask,”Appl. Phys. Lett., Vol. 88, 133121 (2006).

[14].O. Jessensky, F. Müller, U. Gösele,“Self Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,”Appl. Phys. Lett., Vol. 72, 1173 (1998).

[15].Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,”Jpn. J. Appl. Phys., Vol. 36, 7791 (1997).

[16].K. Nielsch, J. Choi,“Self-Ordering Regimes of Porous Alumina,” Nano Letters, Vol. 2, 677 (2002).

[17].Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,”Jpn. J. Appl. Phys., Vol. 36, 7791 (1997).

[18].Shoso Shingubara, Osamu Okino, Yasuyuki Sayama, Hiroyuki Sakaue and Takayuki Takahagi,“Ordered Two Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,”Jpn. J. Appl. Phys., Vol. 36, 7791 (1997).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code