Responsive image
博碩士論文 etd-0730109-113731 詳細資訊
Title page for etd-0730109-113731
論文名稱
Title
直流偏壓擾動造成功率放大器失真研究與功率結合方式之CMOS推挽式E類功率放大器設計
A Study of Power Amplifier Distortion due to DC Bias Perturbation and a Push-Pull Design of CMOS Class-E Power Amplifier Using Power Combining
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-06
繳交日期
Date of Submission
2009-07-30
關鍵字
Keywords
功率放大器、功率結合、偏壓擾動
Power Amplifier, Power Combining, Bias perturbation
統計
Statistics
本論文已被瀏覽 5737 次,被下載 2052
The thesis/dissertation has been browsed 5737 times, has been downloaded 2052 times.
中文摘要
中文提要:
本論文探討偏壓擾動形式之記憶效應對數位預失真技術的影響,在輸入不同頻寬之連續波多音訊號及數位調制訊號條件下,討論數位預失真技術之效能。記憶效應會對數位預失真技術造成相當大的影響,而偏壓擾動是記憶效應的重要來源之一。當降低偏壓擾動後,對數位預失真技術的效果會有所改善。本論文另一重點是利用0.18 μm CMOS製程來設計ㄧ個E類功率放大器晶片,設計上利用電晶體疊接架構來減緩崩潰電壓的問題,並且使用功\率結合技術在晶片中完成阻抗轉換,以提高輸出功率與效率。
Abstract
Abstract:
This thesis studies the memory effect due to bias perturbation on digital predistortion technique, and employs multi-tone continuous wave signal and digital modulation signals with different bandwidth to discuss the performance of digital predistortion technique. Memory effect makes a great impact on the digital predistortion technique, and bias perturbation is one of the major causes. Lowering the bias perturbation can improve the effectiveness of digital predistortion technique. Another focus of this thesis is to design a Class E power amplifier in 0.18 μm CMOS process. The power amplifier uses cascode structure to alleviate the breakdown voltage problem and employs power combining technique to achieve impedance transformation on chip for the purpose of increasing the output power and efficiency.
目次 Table of Contents
目錄 I
圖表目錄 III
第一章 序論 1
1.1 背景簡介 1
1.2 文獻探討 2
1.3 章節規劃 3
第二章 功率放大器線性化技術 4
2.1 非線性特性 4
2.1.1 増益壓縮[31] 4
2.1.2 交互調變失真[31] 6
2.1.3 三階交越點[31] 7
2.1.4 多音交互調變比例[1] 8
2.1.5 鄰近通道功率比例[1] 9
2.1.6 雙音與複音交互調變失真之關係[1] 10
2.1.7 放大器的非線性AM/AM和AM/PM轉換特性[1] 11
2.2 功率放大器線性化技術 12
2.2.1 查表式基頻數位預失真器[6] 13
2.2.2 數位預失真電路架構 16
2.3 基頻數位預失真射頻發射機系統量測結果 18
2.3.1 AM/AM 與AM/PM非線性特性之量測結果 19
2.3.2單音訊號測試之量測結果 20
2.3.3雙音訊號測試之量測結果 20
2.3.4十音訊號測試之量測結果 23
2.3.5 QPSK調制訊號測試之量測結果 26
第三章 功率放大器記憶性偏壓擾動效應 31
3.1 記憶效應 31
3.1.1 電路之記憶效應[7] 34
3.1.2 電熱之記憶效應[7] 37
3.1.3 振幅之記憶效應[7] 39
3.2 記憶效應的線性化技術 41
3.2.1 波包濾波技術[7] 41
3.2.2 波包注入技術[7] 43
3.2.3 阻抗最佳化[7] 45
3.3 偏壓擾動對基頻數位預失真技術影響之量測結果 46
3.3.1 雙音訊號測試之量測結果 47
3.3.2 十音訊號測試之量測結果 52
3.3.3 QPSK調制訊號測試之量測結果 56
第四章 CMOS E類功率放大器之設計 63
4.1 架構簡介 64
4.2 設計流程 66
4.3 模擬與量測結果 68
第五章 結論 76
參考文獻 79
參考文獻 References
[1] P. B. Kenington, High-Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[2] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999.
[3] B. Shi and L. Sundstrom, “Linearization of RF power amplifiers using power feedback,” in IEEE 49th Vehicular Technology Conf., 1999, pp. 1520-1524.
[4] J. K. Cavers, “Adaptive behavior of a feedforward amplifier linearizer,” IEEE Trans. Veh. Technol., vol. 44, pp. 31-40, Feb. 1996.
[5] G. Hau, T. Nishimura, and N. Iwata, “A highly efficient linearized wide-band CDMA handset power amplifier based on predistortion under various bias conditions,” IEEE Trans. Microwave Theory and Tech., vol. 49, pp. 1194-1201, June 2001.
[6] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-Up table techniques for adaptive digital predistortion: a development and comparison,”IEEE Trans. Vehicular Tech., vol. 49, pp.1995-2002, Sep. 2000.
[7] J. Vuolevi and T. Rahkonen, Distortion in RF Power Amplifiers, Norwood, MA: Artech House, 2003.
[8] P. Draxler and I. Langmore, "Time domain characterization of power amplifiers with memory effects, " in 2003 IEEE MTT-S Int. Mircowave Symp. Dig., vol.2, pp. 803-806.
[9] H. Ku and M. D. Kenney, “Quantifying memory effects in RF power amplifiers,” IEEE Trans. Microwave Theory and Tech., vol. 50, pp.2843-2849, Dec. 2003.
[10] J. H. K.Vuolevi and T.Rahkonen, "Measurement technique for characterizing memory effects in RF power amplifiers," IEEE Trans. Microwave Theory and Tech., vol.49, pp. 1383-1389, Aug. 2001.
[11] J. Vuolevi, J. Manninen, and T. Rahkonen, "Cancelling the memory effects in RF power amplifiers," in Proc. IEEE International Symp. of Circuits and Systems, 2001, pp. 57-60.
[12] J. Vuolevi, J. Manninen, and T. Rahkonen, “Memory effects compensation in RF power amplifiers by using envelope injection technique,” in IEEE Radio and Wireless Conf., 2001, pp 19-22
[13] J. Vuolevi, J. Manninen, and T. Rahkonen, “Measurement technique for increasing the linearity by optimising the source: impedance of RF power amplifiers,” in IEEE Radio and Wireless Conf., 2000, pp 10-13.
[14] T. Sowlati, D. M. W. Leenaerts, “A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier” IEEE J. Solid-State Circuits, vol. 38, pp. 1318-1324, Aug 2003.
[15] A. Mazzanti and L. Larcher, “Analysis of reliability and power efficiency in cascode class-E PAs” IEEE J. Solid-State Circuits, vol. 41, pp. 1222-1229, May 2001.
[16] K. J. Cho and J. S. Park, “RF predistortion of power amplifiers using 2nd harmonic based technique for optimization of intermodulation products,” IEEE Trans. Veh. Technol., vol. 1, pp. 621-624 Sep. 2002
[17] F. Chun-Wah , “Theoretical and experimental study of amplifier linearization based on harmonic and baseband signal injection technique,” IEEE Tans. Microwave Theory and Tech., vol. 50, 1801-1806 July 2002.
[18] Y. Hu and J. C. Mollier, “A New Method of Third-Order Intermodulation Reduction in Nonlinear Microwave Systems,” IEEE Trans. Microwave Theory and Tech., vol. 52, pp. 655-663 Feb. 2004.
[19] W. Wangmyong and J. S. Kenney, “A new envelope predistortion linearization architecture for handset power amplifiers,” IEEE Radio and Wireless Conf., 2004, pp 19-22.
[20] D.Jing and W. S. Chan, “New linearization method using interstage second harmonic enhancement,” IEEE Mirco. and Guided Wave Letters, vol. 8, pp. 402-404.
[21] Y. Yang and B. Kim, “A new linear amplifier using low-frequency second-order intermodulation component feedforwarding,” IEEE Mirco. and Guided Wave Letters, vol. 9, pp. 419-421, Oct. 1999.
[22] Y. Youngoo, “New predistortion linearizer using low-frequency even-order intermodulation components,” IEEE Trans. Microwave Theory and Tech., vol. 50, pp. 446-452 Feb. 2002.
[23] P. L. Gilabert and A. Cesari, “Multi-Lookup Table FPGA Implementation of an Adaptive Digital Predistorter for Linearizing RF Power Amplifiers With Memory Effects,” IEEE Tans. Microwave Theory and Tech., vol.56, Feb. 2008.
[24] A. Richards, A. K. Morris and J. P. McGeehan, "Cancellation of electrical memory effects in FET power amplifiers," in Proc. 35th IEEE European Microwave Conference, 2005 , pp. 4-6.
[25] J. Brinkhoff and A. E. Parker, “Baseband impedance and linearization of FET circuits,” IEEE Trans. Microwave Theory and Tech., vol. 51, pp. 2523-2530 Dec. 2003.
[26] A. Khanifar and N. Maslennikov, “Bias circuit topologies for minimization of RF amplifier memory effects,” in Proc. 33th IEEE European Microwave Conference, 2003, pp. 1349-1352.
[27] H. Kawasaki and T. Ohgihara, “An investigation of IM3 distortion in relation to bypass capacitor of GaAs MMIC's,” IEEE Microwave and Millimeter-Wave Mono. Circuits Symp., 1996, pp. 16-18.
[28] H. NAOKI, “A Digital Predistorter for Power Amplifier with Memory Effect,” IEICE Trans. on Commun., Vol. 89, pp. 2062-2071, Oct. 2005.
[29] A. Walker and M. Steer, “A vector intermodulation analyzer applied to behavioral modeling of nonlinear amplifiers with memory”, IEEE Trans. Microwave Theory and Tech., vol. 54, pp. 1991-1999 Feb. 2006.
[30] Ku Hyunchul and J. S. Kenney, “Behavioral modeling of nonlinear RF power amplifiers considering memory effects”, IEEE Trans. Microwave Theory and Tech., vol. 51, pp.2495-2504, Dec. 2003.
[31] D. M. Pozar, Mircowave and RF Design of Wireless Systems. Hoboken, NJ: John Wiley & Sons, Inc.,2003.
[32] N. O. Sokal and A. D. Sokal, “Class E-a new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, June 1975.
[33] F. H. Raab, “Idealized operation of the class E tuned power amplifiers ” IEEE Trans. Circuits and Systems, vol. 24 , pp. 725-735, Dec. 1977.
[34] O. Lee and K. S. Yang, “A 1.8-GHz 2-Watt fully integrated CMOS push-pull parallel-combined power amplifier design,” IEEE Radio Frequency Intergrated Circuits symp., 2007, pp. 435-438.
[35] I. Aoki and S. D. Kee, “Distributed active transformer-a new power-combining and impedance-transformation technique,” IEEE Trans. Microwave Theory and Tech., vol.50, pp.316-331, Jan. 2002.
[36] I. Aoki and S. D. Kee, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, pp. 371-383, March 2002.
[37] P. Haldi, D. Chowdhury, “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in Standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, pp. 1054-1063, May 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code