Responsive image
博碩士論文 etd-0801115-133714 詳細資訊
Title page for etd-0801115-133714
論文名稱
Title
Zn(S,O)和CZTSe的相互擴散現象研究及其在太陽電池之應用
An interdiffusion study of a Zn(S,O)/CZTSe bilayer structure for photovoltaic applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-28
繳交日期
Date of Submission
2015-09-01
關鍵字
Keywords
濺鍍法、界面擴散、Zn(S,O)、CZTSe
sputtering, interdiffusion, Zn(S,O), CZTSe
統計
Statistics
本論文已被瀏覽 5663 次,被下載 1461
The thesis/dissertation has been browsed 5663 times, has been downloaded 1461 times.
中文摘要
本實驗先嘗試利用不同方式製作ZnS薄膜後再摻入O形成ZnS1-xOx(簡稱Zn(S,O))薄膜,最後選定濺鍍法為最好方式,以濺鍍法製作出ZnS薄膜並用XRD確認為單一相後,再摻入氧氣其比例為PO2/Ptotal =1%來形成ZnS1-xOx薄膜並估算x值約為0.2。
鍍製好Zn(S,O)後再將此薄膜取代CdS來鍍製在Cu2ZnSnSe4 (簡稱CZTSe)上,由SEM圖可看出接面間的附著性並不好且從GIXRD圖上來看並沒有明顯的界面擴散,為了改善界面擴散程度及附著性,在充氮環境下分別在400oC及500oC環境下退火兩分鐘,實驗結果從SEM圖得知其附著性皆比退火前好,從XRD圖發現在500oC下Zn(S,O)的峰值消失,而在400oC下Zn(S,O)的峰值仍存在,但從GIXRD圖上來看,界面擴散程度並無明顯增加。
Abstract
This experiment tried to use multiple methods to make ZnS thin film and dope O to form ZnS1-xOx (Zn(S,O)) thin film, and finally selected Reactive Sputtering as the most fittable method. Form ZnS thin film formed by Reactive Sputtering with XRD and assure if the film was single phase or not. Next dope the oxygen with proportion PO2/Ptotal =1% to form ZnS1-xOx thin film and estimated the value of x was 0.2 approximately.
After Zn(S,O) thin film formed, replaced CdS to form on Cu2ZnSnSe4 (CZTSe). The result revealed the adhesion was not good observed from SEM figure and the interdiffusion was not obvious observed from GIXRD figure. To improve the scale of interdiffusion and adhesion, anneal the factor for two minutes on 400oC and 500oC separately. The result revealed the adhesion was better than before annealing on SEM gragh, the peak value of Zn(S,O) disappeared on 500oC, but the peak value of Zn(S,O) existed on 400oC. However, the scale of interdiffusion did not broaden apparently from GIXRD figure.
目次 Table of Contents
論文審定書 I
誌謝 II
中文摘要 III
Abstract IV
目錄 V
圖次 VII
表次 X
第一章 簡介 1
1.1 前言 1
1.2 太陽能電池原理 1
1.3 太陽能電池種類 3
1.4 研究動機與目的 5
第二章 文獻回顧 7
2.1 ZnSxO1-x的材料性質 7
2.1.1 ZnS之材料性質 7
2.1.2 O摻入後之性質變化 9
2.2 ZnSxO1-x製程方式介紹 13
2.2.1 化學水浴沉積法(CBD) 13
2.2.2 濺鍍法(sputtering) 16
2.3 Cu2ZnSnSe4的材料性質 16
第三章 薄膜製程系統、元件製作與分析儀器介紹 20
3.1 薄膜製程系統介紹 20
3.1.1 兩吋共焦濺鍍系統 20
3.1.2 分子束蒸鍍系統 21
3.1.3 電子束蒸鍍系統 21
3.1.4 RTA快速熱退火系統(rapid thermal process) 22
3.1.5 平行濺鍍系統及四吋共焦濺鍍系統 23
3.2 CZTSe前驅層鍍製介紹 24
3.3 薄膜太陽電池疊層介紹 26
3.3 分析方法與儀器介紹 27
3.3.1 穿透光譜儀(Transmition Spectrophotometer) 27
3.3.2 X光繞射分析儀(X-ray diffraction) 28
3.3.3 掃描式電子顯微鏡(SEM) 28
3.3.4 四點探針(four-point probe) 29
3.3.5 顯微拉曼光譜儀(Micro-Raman Spectroscopy) 30
3.3.6 能量解析光譜儀(EDS) 30
3.3.7 歐傑電子能譜儀(AES) 31
3.3.8 I-V量測與模擬光源 31
第四章 實驗結果與討論 32
4.1 實驗流程規劃 32
4.2 以蒸鍍法鍍製ZnS薄膜 32
4.3 以化學水浴法鍍製Zn(S,O)薄膜 34
4.4 以共焦濺鍍系統製作Zn(S,O) 37
第五章 結論 50
參考文獻 51
參考文獻 References
[1] “Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis”, 2012.
[2] Y. Zhao, C. Burda, “Development of plasmonic semiconductor nanomaterials with copper chalcegenides for a future with sustainable energy materials”, Energy Environ Sciences, 5, 5564, 2012.
[3] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells” , Science, 345, 542, 2014.
[4] Q. Guo, H. W. Hillhouse, R. Agrawal, “Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells”, Journal of the American Chemical Society, 131, 11672, 2009.
[5] S. Sharbati, J. R. Sites, “Impact of the Band Offset for n-Zn(O,S)/p-Cu(In,Ga)Se2 Solar Cells”, IEEE Journal of Photovoltaics, 4, 697, 2014.
[6] T. Ericson, J. J. Scragg, A. Hultqvist, J. T. Watjen, P. Szaniawski, T. Torndahl, C. P. Bjorkman, “Zn(O, S) Buffer Layers and Thickness Variations of CdS Buffer for Cu2ZnSnS4 Solar Cells”, IEEE Journal of Photovoltaics, 4, 465, 2014.
[7] Y. M. Chang, H. W. Su, Y. Z. Zhu, G. D. Chen, “Band-gap bowing coefficients in large size-mismatched II-VI alloys: first-principles calculations”, Physical Review B, 74, 233202, 2006.
[8] C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, L. Stolt, “Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient”, Journal of Applied Physics, 100, 44506, 2006.
[9] T. K. Todorov, K. B. Reuter, D. B. Mitzi, “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber”, Advanced Materials, 22, E156, 2010.
[10] http://en.wikipedia.org/wiki/Zinc_sulfide
[11] K. C. Sharma, Y. A. Chang, “The S-Zn (sulfur-zinc) system”, Journal of Phase Equilibria, 17, 261, 1996.
[12] S. K. Pandey, S. Pandey, V. Parashar, R. S. Yadav, G. K. Mehrotraa, A. C. Pandey, “Bandgap engineering of colloidal zinc oxysulfide via lattice substitution with sulfur”, nanoscale, 6, 1062, 2014.
[13] X. Wang, J. Shi, Z. Feng, M. Li, C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals”, Physical Chemistry Chemical Physics, 13, 4715, 2011.
[14] Y. Z. Zhu and G. D. Chen, “Band-gap bowing coefficients in large size-mismatched II-VI alloys: first-principles calculations”, Physical Review B, 74, 233202, 2006.
[15] C. P. Bjӧrkman, J. Malmstrӧm, T. Tӧrndahl, M. Edoff, “Strong Valence-Band Offset Bowing of ZnO1-xSx Enhances p-Type Nitrogen Doping”, Physical Review Letters, 97, 146403, 2006.
[16] B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. Krämer, C. Wang, “Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering”, Applied physics letters, 85, 4929, 2004.
[17] A. Halbe, G. Housser, M. Gardner, T. Groves, P. Haldar, “Evaluation of Reactive Sputtering of ZnS in Ar-O2 Environment as a Pathway to Zn(O,S) Thin-Films”, IEEE Photovoltaic Specialist Conference, 1972, 2013.
[18] K. Ramanathan, J. Mann, S. Glynn, S. Christensen, J. Pankow, J. Li, J. Scharf, L. Mansfield, M. Contreras, R. Noufi, “A Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering”, IEEE Photovoltaic Specialists Conference, 2012.
[19] Y.-Z. Yoo, Zheng-Wu Jin, T. Chikyow, T. Fukumura, M. Kawasaki, H. Koinuma, “S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method”, Applied Physics Letters, 81, 3798, 2002.
[20] T. Hildebrandt, N. Loones, M. Bouttemy, J. Vigneron, A. Etcheberry, D. Lincot, N. Naghavi1, “Search For New Bath Formulations Of Zn(S,O,OH) Buffer Layer To Outperform Record Performances Of CdS-based CIGSe Solar Cells”, IEEE Photovoltaic Specialist Conference, 1114, 2013.
[21] C. Hubert, N. Naghavi, B. Canava, A. Etcheberry, D. Lincot, “Thermodynamic and experimental study of chemical bath deposition of Zn(S,O,OH) buffer layers in basic aqueous ammonia solutions. Cell results with electrodeposited CuIn(S,Se)2 absorbers”, Thin Solid Films, 515, 6032, 2007.
[22] M. A. Contreras, T. Nakada, M. Hongo, A. O. Pudov, J. R. Sites, “ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo SOLAR CELL WITH 18.6% EFFICIENCY”, 3rd World Conference on Photovoltaic Energy Conversion, 1, 570, 2003.
[23] R. Klenk, A. Steigert, P. Gerhardt, F. Hergert, C. A. Kaufmann, I. Lauermann, M. Oertel, P. Pistor, S. Zweigart, M. C. LuxSteiner, “Sputtered Zn(O,S): A Promising Approach to Dry Inline Fabrication of Cd-free CIGS Modules”, Photovoltaic Specialist Conference, 959, 2014.
[24] N. Satoshi, M. Tsuyoshi, W. Takahiro, “Phase Stability and Electronic Structure of In-Free Photovoltaic Materials: Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4”, Japanese Journal of Applied Physics, 49, 121203, 2010.
[25] S. Chen, X. G. Gong, A. Walsh, H. W. Su, “Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights”, Applied Physics Letters, 94, 41903, 2009.
[26] S. Chen, L. W. Wang, A. Walsh, X. G. Gong, H. W. Su, “Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells”, Applied Physics Letters, 101, 223901, 2012.
[27] G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris, and J. Poortmans, “Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells”, Applied Physics Letters, 103, 163904, 2013.
[28] M. Tsega, D. H. Kuo, “Defects and Its Effects on Properties of Cu-Deficient Cu2ZnSnSe4 Bulks with Different Zn/Sn Ratios”, Applied Physics Express, 5, 091201, 2012.
[29] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency”, Energy & Environmental Science, 5, 7060, 2012.
[30] M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, E. Mellikov, “Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy”, Thin Solid Films, 519, 7394, 2011.
[31] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values”, Applied Physics Letters, 97, 21905, 2010.
[32] N. B. M. Amiri, A. Postnikov, “Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: Similarities and differences in lattice vibration modes”, Journal of Applied Physics, 112, 033719, 2012.
[33] 高千惠,Cu2ZnSnSe4薄膜之快速硒化製程研究,國立中山大學材料科學研究所碩士論文,2012。
[34] 王士豪,Cu2ZnSn(S,Se)4薄膜製程之研究,國立中山大學材料科學研究所碩士論文,2014。
[35] I. C. Ndukwe, “Solution growth, characterization and applications of zinc
sulphide thin films”, Solar Energy Materials and Solar Cells, 40, 123, 1996.
[36] K. X. Steirer, R. L. Garris, C. Beall, “Photoelectron Spectroscopy, and Photovoltaic Device Study of Cu2ZnSnSe4 and ZnOxS1-x Buffer Layer Interface”, IEEE Photovoltaic Specialist Conference, 847, 2014.
[37] D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, Y. G. Son, “Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering”, Nanoscale Research Letters, 7, 26, 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code