Responsive image
博碩士論文 etd-0804111-160700 詳細資訊
Title page for etd-0804111-160700
論文名稱
Title
氫化物汽相磊晶法生長氮化鎵(0002)於LiGaO2基板之研究
Growth of free-standing GaN(0002) on LiGaO2 substrates by hydride vapor phase epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-18
繳交日期
Date of Submission
2011-08-04
關鍵字
Keywords
極性氮化鎵、氫物汽相磊晶法、緩衝層、化學汽相沉積法、穿透式電子顯微鏡、X光繞射儀
GaN, HVPE, chemical vapor deposition, X-ray diffraction, LiGaO2, buffer layer
統計
Statistics
本論文已被瀏覽 5716 次,被下載 955
The thesis/dissertation has been browsed 5716 times, has been downloaded 955 times.
中文摘要
本文以氫化物汽相磊晶法(Hydride vapor phase epitaxy, HVPE)生
長極性氮化鎵GaN(0002)於LiGaO2(002)基板,雖然GaN(0002)屬於極
性會影響其發光效率,但相較於其他面卻與基板之間擁有最小的晶格
失配度,再搭配HVPE 的高生長速率,希望能生長出高品質的GaN
厚膜。實驗方法為在自行設計的反應爐中以鎵金屬(Gallium) 與氨氣
(NH3) 分別作為三族鎵源以及五族氮源,並且搭配氫氣、氮氣為反應
過程中之載流氣體(carrier gas),通入反應氣體氯化氫(HCl)與鎵金屬
反應成氯化鎵(GaCl),並在存有氫氣、氮氣形成氛圍氣體之下,有效
地與氨氣(NH3) 反應形成GaN。研究之參數設定上,主要是針對反應
壓力、溫度、和生長時間。為了能得到更好的結晶品質更嘗試以化學
汽相沉積法(Chemical Vapor Deposition, CVD)先生長一層緩衝層
(buffer layer),再以氫化物汽相磊晶法生長厚膜。
下一步實驗則是使用各種儀器進行量測,以掃描式電子顯微鏡
(Scanning Electron Microscope, SEM)和原子力顯微鏡(Atomic Force
Microscpoic, AFM)來觀察其表面形貌;以X 光繞射儀(X-ray Diffracion,
XRD)、穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)來
得知晶格結構,並可瞭解基板與GaN 膜介面之晶體排列結構及磊晶
關係,並使用光激發光譜(Photoluminescence spectroscopy, PL)量測其
光學性質、比較其缺陷和磊晶品質。
Abstract
In this paper, polar free-standing (0002)GaN wafer were fabricated by
using the hydride vapor phase epitaxy(HVPE) technique on (002) LiGaO2
substrates. Polar of The (0002) GaN affects its luminous efficiency, but
compared to other surface between the substrate, it has the smallest lattice
mismatch. With the high growth rate of HVPE, hoping to grow high
quality GaN thick layer. In the self-designed reactor, Metallic gallium and
NH3 were the source of Ga and N. Nitrogen and hydrogen were used as the
carrier gases HCl and nitrogen was designed to pass through liquid Ga to
form GaCl fully. GaN deposition was realized Efficaciously by conducted
steady NH3 and GaCl flows to the substrate suface, accommodated with
additional hydrogen and nitrogen atmosphere flows.The parameters set of
research mainly focus on reaction pressure, temperature, and growth time.
In order to obtain better crystal quality, more attempts were made to grow
buffer layer by chemical vapor deposition first, then a thick GaN layer by
HVPE. The next step is to do the experiment and analyze with various
instruments. Scanning Electron Microscope and atomic force microscopy
Atomic Force Microscpoic are used to observe the surface morphology.
X-ray Diffracion and transmission electron microscopy are used to
know the lattice structure, and to understand the interface between the
substrate and the GaN film crystal structure and epitaxial relationship.
Finally, Photoluminescence spectroscopy is used to measure its optical
properties and compare its defects and epitaxial quality.
目次 Table of Contents
總目錄
摘要 ................................................................................................................... I
Abstrcat ........................................................................................................... III
總目錄 .............................................................................................................. V
表目錄 .......................................................................................................... VIII
圖目錄 ............................................................................................................. IX
第一章 緒論 ..................................................................................................... 1
第二章 文獻回顧與理論基礎 .......................................................................... 3
2-1 GaN 發展簡介............................................................................................. 3
2-2 GaN 結構與性質 ......................................................................................... 6
2-3 磊晶 ............................................................................................................ 9
2-3-1.異質磊晶 ................................................................................................ 10
2-4 氫化物汽相磊晶法在氮化鎵材料上的運用 ........................................... 10
2-5 LGO 基板介紹 .......................................................................................... 13
2-6 氫化物汽相磊晶儀機台介紹 ................................................................... 15
2-6-1 控溫系統 ................................................................................................ 15
2-6-2 控壓系統 ............................................................................................... 16
2-6-3 反應爐管 ............................................................................................... 16
2-6-4 氣體管線 ............................................................................................... 17
第三章 實驗方法及步驟 ................................................................................ 19
3-1 實驗先前準備過程 ................................................................................... 19
3-1-1 基板清洗 ............................................................................................... 19
3-1-2 HVPE 反應爐管清洗 ............................................................................. 19
3-2 HVPE 生長氮化鎵操作流程 .................................................................... 20
3-3 量測儀器介紹 ........................................................................................... 23
3-3-1X 光繞射分析儀 ..................................................................................... 23
3-3-2 場發試掃描式電子顯微鏡 .................................................................... 23
3-3-3 穿透試掃描式電子顯微鏡 .................................................................... 24
3-3-4 光激發光譜(Photoluminescence spectroscopy, PL) ............................... 25
3-3-5 原子力顯微鏡 (Atomic Force Microscpoic , AFM) ............................. 25
第四章 結果與討論 ....................................................................................... 27
4-1 溫度對於生長(002)GAN 面在LGO(002)基板上的影響 ......................... 27
4-1-1 X 光繞射圖(Xray Diffraction Pattern)分析 ........................................... 28
4-1-2 掃描式電子顯微鏡(SEM)分析 .............................................................. 30
4-2 壓力的改變對生長GaN 薄膜的影響....................................................... 33
4-3 以CVD 生長buffer layer ......................................................................... 37
4-3-1. X 光繞射圖(Xray Diffraction Pattern)分析 .......................................... 37
4-3-2.掃描式電子顯微鏡(SEM)分析 .............................................................. 39
4-3-3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) ............ 43
4-4 HVPE 生長GaN 於buffer layer 之結果.................................................. 44
4-4-1 光激發光譜(PL)發光性質分析 ............................................................ 48
4-4-2 穿透式電子顯微鏡(TEM)觀察與分析 ................................................. 50
第五章 結論 ................................................................................................... 52
參考文獻 ......................................................................................................... 53
表目錄
表2-1 氮化鎵之性質 ....................................................................................... 9
表2-2 常使用之基板的晶格常數與lattice mismatch ................................... 14
圖目錄
圖2-1 不同方向視角之氮化鎵 ........................................................................ 7
圖2-2(a)無內建電場的能帶圖形與波函數分佈 .............................................. 8
圖2-2 (b)內建電場的能帶圖形與波函數分布 ................................................. 8
圖2-3 沉積過程示意圖 .................................................................................. 11
圖2-4 GaN(0002)生長在LGO(002)上之示意圖 ........................................... 15
圖2-5 生長腔體示意圖 .................................................................................. 17
圖2-6 實驗室所用HVPE 設計圖 .................................................................. 18
圖2-7 實驗室HVPE 系統示意圖 .................................................................. 18
圖4-1 為生長30 分鐘的GaN 薄膜SEI 圖像 ................................................ 28
圖4-2 各溫度下氮化鎵生長之X-RAY 繞射圖 ............................................ 29
圖4-3 850℃、900℃、950℃、1000℃ rocking curve 的FWHM ................ 30
圖4-4 在850℃下生長氮化鎵(002)之SEM 影像 ......................................... 31
圖4-5 生長溫度900℃ 的氮化鎵二次電子影像 .......................................... 31
圖4-6 生長溫度950℃ 的氮化鎵二次電子影像 .......................................... 32
圖4-7 生長溫度1000℃ 的氮化鎵二次電子影像......................................... 32
圖4-8 壓力50torr 下生長GaN(002)在LGO(002)X-RAY 繞射圖 ................ 33
圖4-9 壓力200torr 下生長GaN(002)在LGO(002)X-RAY 繞射圖 .............. 34
圖4-10 壓力700torr 下生長GaN(002)在LGO(002)X-RAY 繞射圖 ............ 34
圖4-11 壓力50torr 下生長GaN(002)在LGO(002)SEM 影像 ...................... 35
圖4-12 壓力200torr 下生長GaN(002)在LGO(002)SEM 影像 .................... 35
圖4-13 壓力700torr 下生長GaN(002)在LGO(002)SEM 影像 .................... 36
圖4-14 900℃,700torr 下的AFM 圖像 ..................................................... 36
圖4-15 以各溫度下氮化鎵生長之X-RAY 繞射圖 ....................................... 39
圖4-16 生長溫度850℃ 的氮化鎵二次電子影像......................................... 40
圖4-17 生長溫度875℃ 的氮化鎵二次電子影像......................................... 41
圖4-18 生長溫度900℃ 的氮化鎵二次電子影像......................................... 41
圖4-19 生長溫度925℃ 的氮化鎵二次電子影像......................................... 42
圖4-20 生長溫度950℃ 的氮化鎵二次電子影像......................................... 42
圖4-21 以CVD 方法在925℃下生長的GaN 的TEM 影像......................... 44
圖4-22 以buffer layer 生長GaN 厚膜之示意圖 .......................................... 45
圖4-23 以buffer layer 生長GaN 之XRD 圖................................................ 46
圖4-24 以buffer layer 生長GaN 之rocking curve ....................................... 46
圖4-25 以buffer layer 生長GaN 之SEM 影像 ........................................... 47
圖4-26 生長buffer layer 的GaN AFM 圖像 .............................................. 47
圖4-27 不同壓力下生長GaN 的PL 光譜圖 ................................................. 49
圖4-28 以buffer layer 生長的氮化鎵試片的PL 光譜 .................................. 49
圖4-29 GaN(0002)和LGO(002)橫截面TEM 影像 ....................................... 51
參考文獻 References
1. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.
Matsushita, and H. Kiyoku, Appl. Phys. Lett., 70, 1417 (1997).
2. S. M. Kang, T. I. Shin, D. V. Dihn, J. H. Yang, S. Kim, and D. H.
Yoon, J. Cryst. Growth, 311, 490 (2009).
3. H. P. Maruska , and J. J. Tietjen , Appl.Phys. Lett. ,15, 327 (1969).
4. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg,
and S. L. Gilbert , J. Appl. Phys., 44, 292 (1973).
5. H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, Appl. Phys.
Lett., 78,1303 (2001).
6. J. I. Pankove, “ Gallium Nitride (GaN) I ” New York: Academic
Press, (1998).
7. H. P. Maraska, D. A. Stevenson, J. I. Pankove, Appl. Phys. Lett., 22,
303 (1973).
8. T. L. Chu, J. Electrochem. Soc., 118, 1200 (1971).
9. S. Yoshida, S. Gonda, and S. Misawa, Appl. Phy. Lett., 42, 427
(1983).
10. M. A. Khan, R. A. Skogman, and R. G. Schulze, Appl. Phys. Lett.,
42, 430(1983).
11. H. Amano, N. Sawaki, and I. Akasaki, Appl. Phy. Lett., 48, 353
(1986).
12. I. Akasaki, H. Amano, Y. Koide, K. Kiramatsu, and N.Sawaki,
J. Cryst. Growth, 98, 209 (1989).
13. H. Amano and I. Akasaki, Jpn. J. Appl. Phys.,28, 2112 (1989).
14. S. Nakamura, Jpn. J. Appl. Phys., 30, 1705 (1991).
54
15. S. Nakamura, Jpn. J. Appl. Phys., 31, 139 (1992).
16. E.S. Hellman, Z.L. Webber, and D.N. Buchanan, MRS Internet J.
Nitride. Semicond. Res., 2, 30 (1997).
17. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M.
Ramsteiner, and K. H. Ploog, Nature (London), 406, 865 (2000).
18. H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher, and B. Chai,
Opto- Electronics Rev, 11,7 (2003).
19. H. Takahashi, H. Fujioka, J. Ohta, M. Oshima, M. Kimura, J.Cryst.
Growth, 259 , 36 (2003).
20. S. Strite, M. E. Lin, and H.Morkoc,Thin Solid Films, 231,197 (1993)
21. T. Lei, M. Fanciulli, R. J. Molnar, and T. D. Moustakas, Appl. Phys.
Lett., 59, 944 (1991).
22. L. Liu, J. H. Edgar, Mater. Sci. and Eng, 37, 61(2002).
23. 呂受書“分子束磊晶成長電制吸收光調變器結構” 國立中山大學
光電工程所碩士論文 (2003)。
24. S. Strite, M. E. Lin and H. Morkoc,Thin Solid Films, 231.197 (1993).
25. 游志樸編著,“半導體材料”新文京開發出版 (2003)。
26. H. M. Kim , J.E. Oh b, T.W. Kang, Material letters ,47 ,276 (2001)
27. H.O.Pierson, “ Handbook of Chemical Vapor Deposition ”,(Second
Edition ,1999).
28. R. J. Molnar, L. T. Romano, J. Cryst. Growth, 178, 147 (1997).
29. K. Xu, P. Deng, J. Xu, G. Zhou, W. Liu,and Y. Tian, J. Cryst.
Growth, 216, 343 (2000).
30. J. P. Remeika and A. Ballman, Appl. Phys. Lett., 5,180 (1964).
55
31. T. Ishii, Y. Tazoh, and S. Miyazawa, J Cryst.Growth, 189, 20 (1998).
32. M. Losurdo, D. Giuva, G. Bruno ,and S.Huang, J. Cryst. Growth, 264,
139 (2004).
33. D. Kisailus and F.F. Lange , Materials Research Society ,16,7 (2001).
34. O. Kryliouk, M. Reed and T. Dann, Mater. Sci. Eng., B59, 6 (1999).
35. O. Kryliouk, M. Reed and T. Dann, Mater. Sci. Eng., B66, 26 (1999).
36. 楊文福, “利用化學氣相沉積在鋁酸鋰基板上成長非極性氮化鎵”
國立中山大學材料科學研究所碩士論文(2008)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code