Responsive image
博碩士論文 etd-0804114-165933 詳細資訊
Title page for etd-0804114-165933
論文名稱
Title
以稀土元素約束邊緣海之顆粒態有機碳通量
Using rare earth elements to constrain particulate organic carbon flux in marginal seas
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-01
繳交日期
Date of Submission
2014-09-04
關鍵字
Keywords
顆粒態有機碳通量、稀土元素、再懸浮現象、東海、高屏峽谷
particulate organic carbon (POC) fluxes, rare earth elements (REEs), Kaoping Canyon, resuspension, East China Sea (ECS)
統計
Statistics
本論文已被瀏覽 5868 次,被下載 31
The thesis/dissertation has been browsed 5868 times, has been downloaded 31 times.
中文摘要
東海之顆粒態有機碳 (particulate organic carbon, POC) 通量隨著離岸距離增加而遞減,且皆明顯高於基礎生產力,顯示此區域之POC通量有被高估的現象。東海內陸棚的總懸浮物質 (total suspension matter, TSM) 濃度隨深度增加而遞增,顯示內陸棚水體受沉積物再懸浮現象的影響。而高屏峽谷亦有類似東海內陸棚之沉積物再懸浮現象,TSM濃度也隨深度增加而遞增。因此,本研究分析稀土元素 (rare earth elements, REEs) 之Pr及Yb,以及元素Zr和Y在沉降顆粒中的含量,並以兩端點垂直混合模式約束東海及高屏峽谷的POC通量。結果顯示,以POC、REEs和元素Zr和Y 三種方法所得之東海內陸棚、中陸棚及外陸棚的再懸浮比率分別為92%、86%和56%,56%、16%和34%,60%、13%和47%,顯示東海內陸棚沉降顆粒顯著地受沉積物再懸浮影響 (> 50%)。然而高屏峽谷則可能是受側向傳輸為主控,並不適用此垂直混合模式。本研究使用之垂直混合模式雖然忽略了長江沖淡水和側向傳輸的影響,但模式考量了沉降顆粒的生物降解,因此對於校正及量化邊緣海顆粒再懸浮問題,以及估算合理的POC通量提供了一個可行的方法。後續仍須探討尚未考慮的機制 (例如:河流輸入及側向傳輸等),以更精確量化東海及高屏峽谷之碳通量。
Abstract
Fluxes of particulate organic carbon (POC) in the East China Sea (ECS) have been reported to decrease from the inner continental shelf towards the outer continental shelf. Estimates of primary production, however, indicate that previous POC fluxes of the ECS might be overestimated as a result of sediment resuspension. In the shelf waters of the ECS, concentrations of total suspended matter (TSM) generally increase with depth, strongly suggesting sediment resuspension. In the Kaoping Canyon, sediment resuspension has also been reported. To better understand the effect of sediment resuspension on trap-collected sinking particles in the ECS and Kaoping Canyon, in this thesis a vertical two end-member mixing model is used to evaluate the POC fluxes according to data of POC, rare earth elements (REEs; Pr, Yb), and elements Zr and Y in both suspended and sinking particles. The results demonstrate that the ratios of resuspended particles from sediments to trap-collected sinking particles in the inner, middle and outer shelves of the ECS were 92%, 86% and 56% by the POC approach, 56%, 16% and 34% by the REEs approach, and 60%, 13% and 47% by the Zr-Y approach, respectively. These results suggest that strong sediment resuspension (> 50%) occurs on the inner shelf of the ECS. The vertical mixing model is not applicable to the estimation of POC fluxes in the Kaoping Canyon because of strong lateral transport. In conclusion, the vertical mixing model used in this thesis ignores Changjinag plume (or terrestrial) inputs and lateral transport, while it includes biological degradation of sinking particles, and makes significant progress in both correcting the resuspension problem and evaluating reasonable, quantitative estimates of POC fluxes in a marginal sea. Overall, this model is still not a perfect model to estimate sediment resuspension fluxes accurately, because of ignoring riverine input and lateral transport, but it needs a better model to accurately estimate POC flux in next future.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章、緒論 1
1.1全球碳收支 1
1.2前人研究 2
1.2.1邊緣海 2
1.2.2東海 (East China Sea, ECS) 3
1.2.3高屏峽谷 (Kaoping Canyon) 6
1.3稀土元素(rare earth elements, REEs) 7
1.4研究目的 8
第二章、材料與方法 9
2.1研究區域及時間 9
2.2採樣項目及分析方式 10
2.2.1沉積物收集器 10
2.2.2海水樣本 11
2.2.3稀土元素 13
第三章、結果與討論 15
3.1表水溫鹽特性 15
3.2顆粒態有機碳通量與基礎生產力之關係 17
3.3海水樣品之垂直分佈 18
3.3.1東海 (East China Sea) 18
3.3.2高屏峽谷 (Kaoping Canyon) 23
3.4兩端點垂直混合模式 28
3.4.1 POC兩端點混合方法 33
3.4.2 REEs兩端點混合方法 35
3.5比較POC及REEs兩端點混合方法 40
第四章、結論 46
參考文獻 48
參考文獻 References
中文部分:

王立軍、張朝生、章申、陳能堅、楊柳:珠江廣州段水體中稀土元素的地球化學特徵。地理學報,53,2013。

何壯怡:高屏近岸海域微量金屬之分佈與控制機制。中山大學海洋地質及化學研究所碩士論文,2008。

宋煒、劉普靈、楊明義:利用REE示蹤法研究坡面侵蝕過程。水科學進展,2,2004。

吳孟麟:高屏峽谷及附近海域之流場觀測。中山大學海洋資源研究所碩士論文,2004。

林順信:台中都會區大氣懸浮微粒中元素之時間變化與特性。中興大學環境工程學系碩士論文,2009。

陳圓圓、于炳松、蘇新、于淼:西南印度洋中脊鈣質沉積物地球化學及礦物學特徵,地質科技情報,32,107-113,2013。

曾慶威:東海夏季顆粒性有機碳輸出通量。台灣海洋大學海洋環境化學與生態研究所碩士論文,2010。

游婉玲:東海南部夏季基礎生產力的短期變化。台灣海洋大學海洋環境化學與生態研究所碩士論文,2012。

趙小菁、陳汝勤:新竹外海岩心沉積物之粒度,礦物與化學特性及其隱示之地質意義。台灣海洋學刊,41,61-96,2003。


英文部分:

Bale, A. & Morris, A. Organic carbon in suspended particulate material in the North Sea: effect of mixing resuspended and background particles. Continental shelf research 18, 1333-1345 (1998).

Bloesch, J. A review of methods used to measure sediment resuspension. Hydrobiologia 284, 13-18 (1994).

Buesseler, K. O. et al. An assessment of the use of sediment traps for estimating upper ocean particle fuxes. Journal of Marine Research 65, 345-416 (2007).

Chen, C. T. A. & Wang, S. L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research: Oceans (1978–2012) 104, 20675-20686 (1999).

Chern, C.-S. & Wang, J. On the mixing of waters at a northern offshore area of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences 1, 297-306 (1990).

Fowler, S. W. & Knauer, G. A. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography 16, 147-194 (1986).

Gardner, W. D., Hinga, K. R. & Marra, J. Observations on the degradation of biogenic material in the deep ocean with implications on accuracy of sediment trap fluxes. Journal of Marine Research 41, 195-214 (1983).

Gong, G.-C., Liu, K.-K. & Pai, S.-C. Prediction of nitrate concentration from two end member mixing in the southern East China Sea. Continental Shelf Research 15, 827-842 (1995).

Gong, G.-C. & Liu, G.-J. An empirical primary production model for the East China Sea. Continental Shelf Research 23, 213-224 (2003).

Gong, G.-C., Wen, Y.-H., Wang, B.-W. & Liu, G.-J. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography 50, 1219-1236 (2003).

Gong, G.-C. et al. Yangtze River floods enhance coastal ocean phytoplankton biomass and potential fish production. Geophysical Research Letters 38, L13603 (2011).

Haskin, L. A., Frey, F. A., Schmitt, R. A. & Smith, R. H. Meteoritic, solar and terrestrial rare-earth distributions. Physics and Chemistry of the Earth 7, 167-321 (1966).

Henderson, P. in Rare earth element geochemistry (1984).

Hotchkiss, F. S. & Wunsch, C. Internal waves in Hudson Canyon with possible geological implications. Deep Sea Research Part A. Oceanographic Research Papers 29, 415-442 (1982).

Hung, C.-C., Wong, G. T., Liu, K.-K., Shiah, F.-K. & Gong, G.-C. The effects of light and nitrate levels on the relationship between nitrate reductase activity and 15NO3- uptake: Field observations in the East China Sea. Limnology and oceanography 45, 836-848 (2000).

Hung, C.-C., Guo, L., Roberts, K. A. & Santschi, P. H. Upper ocean carbon flux determined by the 234Th approach and sediment traps using size-fractionated POC and 234Th data from the Gulf of Mexico. Geochemical Journal 38, 601-611 (2004).

Hung, C.-C., Gong, G.-C., Chung, W.-C., Kuo, W.-T. & Lin, F.-C. Enhancement of particulate organic carbon export flux induced by atmospheric forcing in the subtropical oligotrophic northwest Pacific Ocean. Marine Chemistry 113, 19-24 (2009).

Hung, C. C. et al. Fluxes of particulate organic carbon in the East China Sea in summer. Biogeosciences 10, 6469-6484 (2013).

Iseki, K., Okamura, K. & Kiyomoto, Y. Seasonality and composition of downward particulate fluxes at the continental shelf and Okinawa Trough in the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography 50, 457-473 (2003).

Kao, S. J., Lin, F. J. & Liu, K. K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep Sea Research Part II: Topical Studies in Oceanography 50, 1203-1217 (2003).

Kirk, J. T. O. Light and photosynthesis in aquatic ecosystems. 509 (Cambridge university press, 1994).

Kulaksız, S. & Bau, M. Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters 260, 361-371 (2007).

Lewis, K. B. & Barnes, P. M. Kaikoura Canyon, New Zealand: active conduit from near-shore sediment zones to trench-axis channel. Marine Geology 162, 39-69 (1999).

Liu, K.-K. et al. Response of Kuroshio upwelling to the onset of the northeast monsoon in the sea north of Taiwan: Observations and a numerical simulation. Journal of Geophysical Research 97, 12511 (1992).

Liu, K., Iseki, K. & Chao, S. Continental margin carbon fluxes. The changing ocean carbon cycle: a midterm synthesis of the Joint Global Ocean Flux Study 5, 187-239 (2000).

Liu, J. T. & Lin, H.-l. Sediment dynamics in a submarine canyon: a case of river–sea interaction. Marine Geology 207, 55-81 (2004).

Liu, K.-K., Atkinson, L., Quiñones, R. & Talaue-McManus, L. Biogeochemistry of the Kuroshio and the East China Sea. Carbon and nutrient fluxes in continental margins: a global synthesis (2010).

Maita, Y., Parsons, T. & Lalli, C. M. A manual of chemical and biological methods for seawater analysis. 173 (Pergamon press, 1984).
McLennan, S. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21, 169-200 (1989).

Oguri, K., Matsumoto, E., Yamada, M., Saito, Y. & Iseki, K. Sediment accumulation rates and budgets of depositing particles of the East China Sea. Deep Sea Research Part II: Topical Studies in Oceanography 50, 513-528 (2003).

Pai, S.-C., Yang, C.-C. & P Riley, J. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Analytica Chimica Acta 232, 345-349 (1990).

Santschi, P. H. Control of acid polysaccharide production and234Th and POC export fluxes by marine organisms. Geophysical Research Letters 30 (2003).

Sheu, D. D., Jou, W.-C., Chen, M.-J., Lee, W.-Y. & Lin, S. Variations of calcium carbonate, organic carbon and their isotopic compositions in surface sediments of the East China Sea. Terr. Atmos. Oceanic Sci 16, 115-128 (1995).

Strickland, J. & Parsons, T. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, 310 (1972).

Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Research Part II: Topical Studies in Oceanography 56, 554-577 (2009).

Taylor, S. R. & McLennan, S. M. The continental crust: its composition and evolution. (1985).

Walsh, J. How much shelf production reaches the deep sea. (University of South Florida, St. Petersburg (USA). Dept. of Marine Science, 1988).

Zhang, C., Wang, L., Zhang, S. & Li, X. Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Applied Geochemistry 13, 451-462 (1998).

Zhu, Z. Y., Zhang, J., Wu, Y. & Lin, J. Bulk particulate organic carbon in the East China Sea: Tidal influence and bottom transport. Progress in Oceanography 69, 37-60 (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code