Responsive image
博碩士論文 etd-0804115-041407 詳細資訊
Title page for etd-0804115-041407
論文名稱
Title
細胞黏著因子和大腦血液灌流在急性缺血性腦中風以及輕度認知功能障礙病患的角色
The role of cell adhesion molecules and cerebral perfusion in patients with acute ischemic stroke and mild cognitive impairment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-23
繳交日期
Date of Submission
2015-09-05
關鍵字
Keywords
動脈自旋標記磁振影像、輕微認知功能障礙、腦中風、細胞黏著因子、腦血流
stroke, mild cognitive impairment, ASL perfusion MRI, cerebral perfusion, cell adhesion molecules
統計
Statistics
本論文已被瀏覽 5944 次,被下載 607
The thesis/dissertation has been browsed 5944 times, has been downloaded 607 times.
中文摘要
背景及目的:足夠的腦血流對於維持腦部的正常功能相當重要。血管阻塞造成急性局部腦血流不足是造成中風的原因。然而慢性腦血流不足對於腦部結構的改變以及認知功能的影響越來越受到重視。早期神經學症狀惡化常在腦中風病人身上發現並且與不良的預後有關。過去有研究指出細胞黏著因子可能參與了栓塞區域的病生理變化,然而它與腦血流的關係仍然不清楚。因此本研究將利用新的影像技術動脈自旋標記磁振影像(ASL perfusion MRI)來測量腦血流,並探討(1)在腦中風病患中,灌注-擴散加權影像不匹配與早期神經學症狀惡化的關係;(2)在輕微認知功能障礙病患中,慢性腦血流不足對於大腦結構的改變以及認知功能的影響;(3)細胞黏著因子與灌注-擴散加權影像不匹配以及慢性腦血流不足的關係。

研究方法:此研究將分別收錄腦中風以及輕微認知功能障礙病患。在腦中風發生後48小時內執行動脈自旋標記磁振影像來偵測灌注-擴散加權影像不匹配,美國國家衛生研究院腦中風量表以及巴氏量表用來評估入院時,症狀發生一星期後及一個月後的神經學症狀和日常生活功能。早期神經學症狀惡化的定義為中風發生一星期後美國國家衛生研究院腦中風量表惡化超過兩分或以上。在入院時以及症狀發生一星期後,細胞黏著因子包括(VCAM-1, ICAM-1以及 E-selectin)在血漿的濃度將被測量。在輕微認知功能障礙病患中,我們使用動脈自旋標記磁振影像來測量各區域的腦血流量並且評估病患的認知功能以及測量收錄時的細胞黏著因子濃度。

結果: 共收錄120急性腦中風病患,其中風位於大腦半球內。65位是小間隙梗塞,55位是血栓及栓塞性梗塞。血栓及栓塞性梗塞的病患合併有灌注-擴散加權影像不匹配者有較高早期神經學症狀惡化的風險。而血中VCAM-1的濃度較高與灌注-擴散加權影像不匹配者及早期神經學症狀惡化有關。另外也收錄了110位輕微認知功能障礙病患。腦血流不足與認知功能下降,內側顳葉萎縮以及白質病變增加有關。而血中VCAM-1的濃度與腦血流成反比關係尤其是在後側頂葉部分。

結論: 本研究顯示急性腦血流不足造成灌注-擴散加權影像不匹配及早期神經學症狀惡化以及慢性腦血流不足與認知功能下降,內側顳葉萎縮以及白質病變有關。而細胞黏著因子尤其是VCAM-1對於急性或慢性腦血流不足扮演了一定的角色。
Abstract
Background and Purposes: Maintaining sufficient blood flow to the brain consistently is important to keep normal brain function. As we know, ischemic stroke is a common disease caused by acute impairment of focal cerebral perfusion due to vessel occlusion. However, attention has recently focused on the adverse effect of chronic cerebral hypoperfusion on brain structural changes and cognitive function. Early neurologic deterioration (END) is frequently observed and related to poor functional outcome in acute ischemic stroke, Cell adhesion molecules (CAMs) have been reported to involve the pathogenesis of cerebral ischemia, however, the association with cerebral perfusion has not been evaluated. In this thesis, Arterial spin labeling (ASL) MRI, a new imaging technique, was used to assess the cerebral perfusion. There were several purposes in this study. (1) To understand the association between perfusion-diffusion (PWI-DWI) mismatch and END in acute stroke. (2) To understand the association between chronic cerebral perfusion and brain structural change in mild cognitive impairment (MCI). (3) To evaluate the impact of CAMs on perfusion-diffusion mismatch in acute stroke and cerebral hypoperfusion in MCI.

Material and methods: The study separately enrolled acute stroke patients and patients with MCI. In acute stroke, ASL perfusion MRI was performed within 48 h of symptoms onset to detect PWI-DWI mismatch. National Institutes of Health Stroke Scale (NIHSS) and Barthel index were used to score neurologic deficit and functional impairment at admission, one week and one month after stroke. END was defined as an increase of 2 or more points in NIHSS within one week after stroke onset. Plasma levels of CAMs including VCAM-1, ICAM-1and E-selectin were measured at admission and one week after symptoms onset. In patients with MCI, ASL perfusion was used to quantitate regional cerebral perfusion. Cognitive function was assessed and plasma levels of CAMs were measured at enrollment.

Result: 120 patients with acute stroke in cerebral hemisphere were enrolled. There were 65 patients with lacunar stroke and 55 patients with thromboembolic stroke. Patients with PWI-DWI mismatch had higher risk for END in thromboembolic infarct. Higher level of VCAM-1 was independently associated with PWI-DWI mismatch and END in thromboembolic infarct. 110 patients with MCI were enrolled. Cerebral hypoperfusion was associated with cognitive impairment, medial temporal lobe atrophy and increase white matter lesions. The level of VCAM-1 was significant inversely associated with cerebral cortical perfusion especially posterior parietal lobe even after adjusted for cerebrovascular risk factors.

Conclusion: The study suggested the importance of cerebral perfusion as the PWI-DWI mismatch associated with END in acute stroke and chronic cerebral hypoperfusion associated with medial temporal lobe atrophy, white matter lesions and cognitive impairment in MCI. CAMs especially VCAM-1 played a role in acute and chronic cerebral hypoperfusion.
目次 Table of Contents
論文審定書 ...................................................................................................... i
誌謝 ………………………………........................................................................ ii
中文摘要......................................................................................................... iii
英文摘要......................................................................................................... iv

第一章 Introduction and purpose ..................................................................... 1
1.1 Cerebral perfusion ................................................................................... 1
1.2 Imaging of cerebral perfusion .................................................................... 1
1.3 Early neurologic deterioration in acute stroke ……...................................... 2
1.4 Cerebral perfusion in acute ischemic stroke .............................................. 3
1.5 Perfusion imaging and related findings in acute stroke ............................... 4
1.6 Cerebral perfusion in patients with mild cognitive impairment ...................... 6
1.7 Perfusion imaging and related findings in patients with MCI ........................ 7
1.7.1 Cerebral perfusion and cortical atrophy .................................................. 7
1.7.2 Cerebral perfusion and white matter lesions ........................................... 8
1.8 Roles of cell adhesion molecules ……………………................................... 8
1.8.1 Roles of cell adhesion molecules in acute stroke ................................... 9
1.8.2 Roles of cell adhesion molecules in dementia ........................................ 10
1.9 Rationale and aims of the study .............................................................. 11
1.9.1 Rationale and aims of the study in acute stroke ..................................... 11
1.9.1 Rationale and aims of the study in patients with MCI .............................. 12
第二章 Material and methods ........................................................................ 14
2.1 Patient enrolment ................................................................................... 14
2.1.1 Patients with acute ischemic stroke ...................................................... 14
2.1.2 Patients with mild cognitive impairment ................................................. 15
2.2 Cerebrovascular risk confounders ............................................................. 15
2.3 Plasma levels of cell adhesion molecules ................................................. 16
2.4 Clinical assessments .............................................................................. 17
2.4.1 Neurologic deficit and outcome evaluation in acute stroke ........................ 17
2.4.2 Cognitive assessment in patients with mild cognitive impairment .............. 17
2.5 Brain magnetic resonance imaging ........................................................... 17
2.5.1 Imaging acquisition .............................................................................. 17
2.5.2 Quantitative infarct volume and PWI-DWI mismatch ................................ 18
2.5.3 ASL perfusion MRI analysis in MCI ........................................................ 19
2.5.4 Gray matter atrophy using voxel-based morphometry .............................. 20
2.5.5 Automated gray matter volumetry .......................................................... 21
2.5.6 Assessment of white Matter Changes .................................................... 23
2.6 Statistical analysis ................................................................................. 24
3.6.1 In patients with acute stroke ................................................................. 24
3.6.2 In patients with MCI ............................................................................. 25
第三章 Results-in acute ischemic stroke ........................................................ 26
3.1 Demographic data and clinical characteristics in patients with lacunar and thromboembolic infarct ................................................................................................................... 26
3.2 Plasma levels of cell adhesion molecules in patients with lacunar and thromboembolic infarct ................................................................................................................... 26
3.3 Risk factors for early neurologic deterioration in all stroke patients .............. 26
3.4 Risk factors for early neurologic deterioration in thromboembolic stroke ...... 26
3.5 Predictors for PWI-DWI mismatch in thromboembolic stroke ..................... 27
第四章Results-in mild cognitive impairment .................................................... 35
4.1 Clinical characteristics of patients with MCI and its association with cerebral perfusion ................................................................................................................... 35
4.2 The association between VCAM-1 and regional cerebral perfusion ............... 35
4.3 The association between cerebral perfusion and cognitive function ............... 35
4.4 The association between cerebral perfusion and regional gray matter volume .................................................................................................................... 36
4.5 The association between global cerebral perfusion and white matter lesions .................................................................................................................... 36
第五章Discussion and conclusion .................................................................. 49
5.1 Main findings .......................................................................................... 49
5.2 In patients with acute ischemic stroke ....................................................... 49
5.2.1 Levels of CAMs in acute ischemic stroke ................................................ 49
5.2.2 PWI-DWI mismatch and early neurologic deterioration in thromboembolic stroke .................................................................................................................... 50
5.2.3 VCAM-1 and history of hypertension were associated with PWI-DWI mismatch in thromboembolic stroke .................................................................................................................... 50
5.2.4 Cell adhesion molecules and early neurologic deterioration ....................... 51
5.3 In patients with mild cognitive impairment ................................................... 53
5.3.1 The association between CAMs and cerebral perfusion ............................. 53
5.3.2 The association between cerebral hypoperfusion medial temporal atrophy ..................................................................................................................... 54
5.3.3 The association between cerebral perfusion and white matter lesions ..................................................................................................................... 55
5.3.4 The association between cerebral perfusion and cognitive function ............. 55
5.3.5 Other factors correlated with cerebral perfusion ………………................…. 56
5.4 Conclusion ............................................................................................ 56
第六章Technical considerations and possible limitation ..................................... 58
第七章Future direction ................................................................................... 60
參考文獻........................................................................................................ 62
附錄 . ......................................................................................................... 74

圖次
圖2-1 PWI-DWI mismatch and without match ................................................... 19
圖2-2 Process of ASL perfusion imaging ......................................................... 20
圖2-3 Process of grey matter .......................................................................... 21
圖2-4 Flowchart of IBASPM steps ................................................................... 22
圖2-5 Fazekas scale for WMLs ....................................................................... 24
圖3-1 Levels of cell adhesion molecules in patients with lacunar and thromboembolic infarct ..................................................................................................................... 30
圖4-1 Regions of cortical perfusion that were inversely correlated with levels of VCAM-1 ...................................................................................................................... 40
圖4-2 The correlation between VCAM-1 level and posterior-inferior parietal perfusion ..................................................................................................................... 41
圖4-3 Regions of perfusion that were correlated with short term memory score .... 43
圖4-4 The correlation between cerebral perfusion and cognition .......................... 44
圖4-5 Regions of gray matter volume correlated to global cerebral perfusion ........ 46
圖4-6 The correlation between medial temporal perfusion and medial temporal volume .................................................................................................................... 47



表次
表3-1 Clinical data in patients with lacunar and thromboembolic infarct............... 28
表3-2 Levels of cell adhesion molecules in patients with lacunar and thromboembolic infarct........................................................................................................... 29
表3-3 Factors associated with early neurologic deterioration in patients with acute ischemic stroke.......................................................................................................... 30
表3-4 Factors associated with early neurologic deterioration in patients with thromboembolic infarct........................................................................................................... 31
表3-5 Factors associated with PWI-DWI mismatch in patients with thromboembolic infarct........................................................................................................... 32
表3-6 Multivariate logistic regression analysis for possible factors associated with PWI-DWI mismatch .................................................................................................................... 33
表4-1 Clinical data of 110 patients with mild cognitive impairment and the correlation with global cerebral perfusion .................................................................................................................... 36
表4-2 Correlation between VCAM-1 and regional cerebral perfusion.................... 37
表4-3 Correlation between cerebral perfusion and cognitive function.................... 42
表4-4 Correlation between cerebral perfusion and gray matter atrophy................. 45
表4-5 Correlation between cerebral perfusion and white matter lesions................ 48
參考文獻 References
References
1. Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, Clarke DD, Sokoloff L: Circulation and Energy Metabolism of the Brain. 1999.
2. del Zoppo GJ, Mabuchi T: Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 2003, 23(8):879-894.
3. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, Glenn TC, Grandin CB, Pedraza S, Soustiel JF et al: Comparative overview of brain perfusion imaging techniques. Stroke 2005, 36(9):e83-99.
4. Baird AE, Warach S: Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 1998, 18(6):583-609.
5. Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE: Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis. Radiology 2007, 242(3):647-649.
6. Detre JA, Rao H, Wang DJ, Chen YF, Wang Z: Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 2012, 35(5):1026-1037.
7. Chen Y, Wolk DA, Reddin JS, Korczykowski M, Martinez PM, Musiek ES, Newberg AB, Julin P, Arnold SE, Greenberg JH et al: Voxel-level comparison of arterial spin-labeled perfusion MRI and FDG-PET in Alzheimer disease. Neurology 2011, 77(22):1977-1985.
8. Xu G, Rowley HA, Wu G, Alsop DC, Shankaranarayanan A, Dowling M, Christian BT, Oakes TR, Johnson SC: Reliability and precision of pseudo-continuous arterial spin labeling perfusion MRI on 3.0 T and comparison with 15O-water PET in elderly subjects at risk for Alzheimer's disease. NMR Biomed 2010, 23(3):286-293.
9. Niibo T, Ohta H, Yonenaga K, Ikushima I, Miyata S, Takeshima H: Arterial spin-labeled perfusion imaging to predict mismatch in acute ischemic stroke. Stroke 2013, 44(9):2601-2603.
10. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ et al: Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 2015, 131(4):e29-322.
11. Davalos A, Cendra E, Teruel J, Martinez M, Genis D: Deteriorating ischemic stroke: risk factors and prognosis. Neurology 1990, 40(12):1865-1869.
12. Lin LC, Yang JT, Weng HH, Hsiao CT, Lai SL, Fann WC: Predictors of early clinical deterioration after acute ischemic stroke. Am J Emerg Med 2011, 29(6):577-581.
13. Thanvi B, Treadwell S, Robinson T: Early neurological deterioration in acute ischaemic stroke: predictors, mechanisms and management. Postgrad Med J 2008, 84(994):412-417.
14. Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT: Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. The FEBS journal 2009, 276(1):13-26.
15. Hossmann KA: Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1994, 36(4):557-565.
16. Astrup J, Siesjo BK, Symon L: Thresholds in cerebral ischemia - the ischemic penumbra. Stroke 1981, 12(6):723-725.
17. Ginsberg MD: Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 2003, 34(1):214-223.
18. Lo EH, Moskowitz MA, Jacobs TP: Exciting, radical, suicidal: how brain cells die after stroke. Stroke 2005, 36(2):189-192.
19. Hossmann KA: Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol 2006, 26(7-8):1057-1083.
20. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995, 333(24):1581-1587.
21. Lovblad KO, Baird AE, Schlaug G, Benfield A, Siewert B, Voetsch B, Connor A, Burzynski C, Edelman RR, Warach S: Ischemic lesion volumes in acute stroke by diffusion-weighted magnetic resonance imaging correlate with clinical outcome. Ann Neurol 1997, 42(2):164-170.
22. Barber PA, Darby DG, Desmond PM, Yang Q, Gerraty RP, Jolley D, Donnan GA, Tress BM, Davis SM: Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology 1998, 51(2):418-426.
23. Hartkamp NS, van Osch MJ, Kappelle J, Bokkers RP: Arterial spin labeling magnetic resonance perfusion imaging in cerebral ischemia. Curr Opin Neurol 2014, 27(1):42-53.
24. Ma H, Wright P, Allport L, Phan TG, Churilov L, Ly J, Zavala JA, Arakawa S, Campbell B, Davis SM et al: Salvage of the PWI/DWI mismatch up to 48 h from stroke onset leads to favorable clinical outcome. Int J Stroke 2015, 10(4):565-570.
25. Kane I, Sandercock P, Wardlaw J: Magnetic resonance perfusion diffusion mismatch and thrombolysis in acute ischaemic stroke: a systematic review of the evidence to date. J Neurol Neurosurg Psychiatry 2007, 78(5):485-491.
26. Beaulieu C, de Crespigny A, Tong DC, Moseley ME, Albers GW, Marks MP: Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 1999, 46(4):568-578.
27. Kim JP, Kim SJ, Lee JJ, Cha JH, Bang OY, Chung CS, Lee KH, Kim GM: Diffusion-Perfusion Mismatch in Single Subcortical Infarction: A Predictor of Early Neurological Deterioration and Poor Functional Outcome. Eur Neurol 2015, 73(5-6):353-359.
28. Hsu CY, Cheng CY, Tsai YH, Lee J, Yang JT, Weng HH, Lin LC, Huang YC, Lee M, Lee MH et al: Perfusion-diffusion mismatch predicts early neurological deterioration in anterior circulation infarction without thrombolysis. Curr Neurovasc Res 2015.
29. Arenillas JF, Rovira A, Molina CA, Grive E, Montaner J, Alvarez-Sabin J: Prediction of early neurological deterioration using diffusion- and perfusion-weighted imaging in hyperacute middle cerebral artery ischemic stroke. Stroke 2002, 33(9):2197-2203.
30. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA: Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000, 31(3):680-687.
31. Ott A, Breteler MM, van Harskamp F, Claus JJ, van der Cammen TJ, Grobbee DE, Hofman A: Prevalence of Alzheimer's disease and vascular dementia: association with education. The Rotterdam study. BMJ 1995, 310(6985):970-973.
32. de la Torre JC: Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics. Lancet Neurol 2004, 3(3):184-190.
33. Breteler MM: Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Ann N Y Acad Sci 2000, 903:457-465.
34. de la Torre JC: Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer's pathogenesis. Neurobiol Aging 2000, 21(2):331-342.
35. de la Torre JC, Cada A, Nelson N, Davis G, Sutherland RJ, Gonzalez-Lima F: Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats. Neurosci Lett 1997, 223(3):165-168.
36. Petersen RC: Mild cognitive impairment as a diagnostic entity. J Intern Med 2004, 256(3):183-194.
37. Panza F, Capurso C, D'Introno A, Colacicco AM, Capurso A, Solfrizzi V, Bennett: Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology 2007, 68(12):964; author replly 964-965.
38. Alsop DC, Dai W, Grossman M, Detre JA: Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer's disease. J Alzheimers Dis 2010, 20(3):871-880.
39. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, Gorno-Tempini ML, Schuff N: Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 2005, 234(3):851-859.
40. Dai W, Lopez OL, Carmichael OT, Becker JT, Kuller LH, Gach HM: Mild cognitive impairment and alzheimer disease: patterns of altered cerebral blood flow at MR imaging. Radiology 2009, 250(3):856-866.
41. Chao LL, Buckley ST, Kornak J, Schuff N, Madison C, Yaffe K, Miller BL, Kramer JH, Weiner MW: ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis Assoc Disord 2010, 24(1):19-27.
42. Huang CW, Chang WN, Huang SH, Lui CC, Chen NC, Chang YT, Lee CC, Chang CC, Chang AY: Impact of homocysteine on cortical perfusion and cognitive decline in mild Alzheimer's dementia. Eur J Neurol 2013, 20(8):1191-1197.
43. Alosco ML, Gunstad J, Jerskey BA, Xu X, Clark US, Hassenstab J, Cote DM, Walsh EG, Labbe DR, Hoge R et al: The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease. Brain and behavior 2013, 3(6):626-636.
44. Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, Terrero G, Schwarz NF, Walsh EG, Poppas A et al: The impact of hypertension on cerebral perfusion and cortical thickness in older adults. Journal of the American Society of Hypertension : JASH 2014, 8(8):561-570.
45. Caroli A, Testa C, Geroldi C, Nobili F, Guerra UP, Bonetti M, Frisoni GB: Brain perfusion correlates of medial temporal lobe atrophy and white matter hyperintensities in mild cognitive impairment. J Neurol 2007, 254(8):1000-1008.
46. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D'Agostino RB, DeCarli C: Stroke risk profile predicts white matter hyperintensity volume: the Framingham Study. Stroke 2004, 35(8):1857-1861.
47. Huang CW, Chang WN, Lui CC, Chen CF, Lu CH, Wang YL, Chen C, Juang YY, Lin YT, Tu MC et al: Impacts of hyper-homocysteinemia and white matter hyper-intensity in Alzheimer's disease patients with normal creatinine: an MRI-based study with longitudinal follow-up. Curr Alzheimer Res 2010, 7(6):527-533.
48. Alosco ML, Brickman AM, Spitznagel MB, Garcia SL, Narkhede A, Griffith EY, Raz N, Cohen R, Sweet LH, Colbert LH et al: Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail 2013, 19(4):E29-34.
49. Kobari M, Meyer JS, Ichijo M, Oravez WT: Leukoaraiosis: correlation of MR and CT findings with blood flow, atrophy, and cognition. AJNR Am J Neuroradiol 1990, 11(2):273-281.
50. Krieglstein CF, Granger DN: Adhesion molecules and their role in vascular disease. Am J Hypertens 2001, 14(6 Pt 2):44S-54S.
51. Adams DH, Shaw S: Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 1994, 343(8901):831-836.
52. Smith CW: Endothelial Adhesion Molecules and Their Role in Inflammation. Can J Physiol Pharmacol 1993, 71(1):76-87.
53. Fassbender K, Bertsch T, Mielke O, Muhlhauser F, Hennerici M: Adhesion molecules in cerebrovascular diseases. Evidence for an inflammatory endothelial activation in cerebral large- and small-vessel disease. Stroke 1999, 30(8):1647-1650.
54. Matsuo Y, Onodera H, Shiga Y, Shozuhara H, Ninomiya M, Kihara T, Tamatani T, Miyasaka M, Kogure K: Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain research 1994, 656(2):344-352.
55. Bitsch A, Klene W, Murtada L, Prange H, Rieckmann P: A longitudinal prospective study of soluble adhesion molecules in acute stroke. Stroke 1998, 29(10):2129-2135.
56. Blum A, Khazim K, Merei M, Peleg A, Blum N, Vaispapir V: The stroke trial - can we predict clinical outcome of patients with ischemic stroke by measuring soluble cell adhesion molecules (CAM)? Eur Cytokine Netw 2006, 17(4):295-298.
57. Castellanos M, Castillo J, Garcia MM, Leira R, Serena J, Chamorro A, Davalos A: Inflammation-mediated damage in progressing lacunar infarctions: a potential therapeutic target. Stroke 2002, 33(4):982-987.
58. Wang JY, Zhou DH, Li J, Zhang M, Deng J, Gao C, Lian Y, Chen M: Association of soluble intercellular adhesion molecule 1 with neurological deterioration of ischemic stroke: The Chongqing Stroke Study. Cerebrovasc Dis 2006, 21(1-2):67-73.
59. Castillo J, Alvarez-Sabin J, Martinez-Vila E, Montaner J, Sobrino T, Vivancos J: Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J Neurol 2009, 256(2):217-224.
60. Tsai NW, Chang WN, Shaw CF, Jan CR, Huang CR, Chen SD, Chuang YC, Lee LH, Lu CH: The value of leukocyte adhesion molecules in patients after ischemic stroke. J Neurol 2009, 256(8):1296-1302.
61. Debette S, Seshadri S, Beiser A, Au R, Himali JJ, Palumbo C, Wolf PA, DeCarli C: Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology 2011, 77(5):461-468.
62. Libby P, Aikawa M, Jain MK: Vascular endothelium and atherosclerosis. Handb Exp Pharmacol 2006(176 Pt 2):285-306.
63. Zuliani G, Cavalieri M, Galvani M, Passaro A, Munari MR, Bosi C, Zurlo A, Fellin R: Markers of endothelial dysfunction in older subjects with late onset Alzheimer's disease or vascular dementia. J Neurol Sci 2008, 272(1-2):164-170.
64. Rentzos M, Michalopoulou M, Nikolaou C, Cambouri C, Rombos A, Dimitrakopoulos A, Kapaki E, Vassilopoulos D: Serum levels of soluble intercellular adhesion molecule-1 and soluble endothelial leukocyte adhesion molecule-1 in Alzheimer's disease. J Geriatr Psychiatry Neurol 2004, 17(4):225-231.
65. Borroni B, Volpi R, Martini G, Del Bono R, Archetti S, Colciaghi F, Akkawi NM, Di Luca M, Romanelli G, Caimi L et al: Peripheral blood abnormalities in Alzheimer disease: evidence for early endothelial dysfunction. Alzheimer Dis Assoc Disord 2002, 16(3):150-155.
66. Huang CW, Tsai MH, Chen NC, Chen WH, Lu YT, Lui CC, Chang YT, Chang WN, Chang AY, Chang CC: Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia. Thromb Haemost 2015, 114(6).
67. Fisher M, Garcia JH: Evolving stroke and the ischemic penumbra. Neurology 1996, 47(4):884-888.
68. McMurray RW: Adhesion molecules in autoimmune disease. Semin Arthritis Rheum 1996, 25(4):215-233.
69. Sanchez-Madrid F, Gonzalez-Amaro R: Drugs, inflammation and cell adhesion receptors. Expert opinion on pharmacotherapy 2001, 2(1):3-17.
70. Adams HP, Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE, 3rd: Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24(1):35-41.
71. Petersen RC: Mild cognitive impairment as a diagnostic entity. J Intern Med 2004, 256(3):183-194.
72. Gavin JR, 3rd: New classification and diagnostic criteria for diabetes mellitus. Clin Cornerstone 1998, 1(3):1-12.
73. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., Jones DW, Materson BJ, Oparil S, Wright JT, Jr. et al: The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003, 289(19):2560-2572.
74. Folstein MF, Folstein SE, McHugh PR: "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975, 12(3):189-198.
75. Teng EL, Hasegawa K, Homma A, Imai Y, Larson E, Graves A, Sugimoto K, Yamaguchi T, Sasaki H, Chiu D et al: The Cognitive Abilities Screening Instrument (CASI): a practical test for cross-cultural epidemiological studies of dementia. Int Psychogeriatr 1994, 6(1):45-58; discussion 62.
76. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS: A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001, 14(1 Pt 1):21-36.
77. Proceedings of the IBASPM: Toolbox for automatic parcellation of brain structures: 2006; Florence, Italy.
78. Fazekas F, Kapeller P, Schmidt R, Offenbacher H, Payer F, Fazekas G: The relation of cerebral magnetic resonance signal hyperintensities to Alzheimer's disease. J Neurol Sci 1996, 142(1-2):121-125.
79. Frijns CJ, Kappelle LJ: Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 2002, 33(8):2115-2122.
80. Hoyte LC, Brooks KJ, Nagel S, Akhtar A, Chen R, Mardiguian S, McAteer MA, Anthony DC, Choudhury RP, Buchan AM et al: Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab 2010, 30(6):1178-1187.
81. Pulsinelli W: Pathophysiology of acute ischaemic stroke. Lancet 1992, 339(8792):533-536.
82. Castellanos M, Serena J: Applicability of biomarkers in ischemic stroke. Cerebrovasc Dis 2007, 24 Suppl 1:7-15.
83. Galkina E, Ley K: Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 2007, 27(11):2292-2301.
84. de Leeuw FE, de Kleine M, Frijns CJ, Fijnheer R, van Gijn J, Kappelle LJ: Endothelial cell activation is associated with cerebral white matter lesions in patients with cerebrovascular disease. Ann N Y Acad Sci 2002, 977:306-314.
85. Gunning-Dixon FM, Raz N: The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology 2000, 14(2):224-232.
86. Weitz-Schmidt G: Statins as anti-inflammatory agents. Trends Pharmacol Sci 2002, 23(10):482-486.
87. van Gelderen P, de Zwart JA, Duyn JH: Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 2008, 59(4):788-795.
88. Deppe M, Duning T, Mohammadi S, Schwindt W, Kugel H, Knecht S, Ringelstein EB: Diffusion-tensor imaging at 3 T: detection of white matter alterations in neurological patients on the basis of normal values. Investigative radiology 2007, 42(6):338-345.
89. Alexander AL, Lee JE, Lazar M, Field AS: Diffusion tensor imaging of the brain. Neurotherapeutics 2007, 4(3):316-329.
90. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, Calabresi PA, Pekar JJ, van Zijl PC, Mori S: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 2008, 39(1):336-347.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code