博碩士論文 etd-0808111-011332 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 簡嘉威(Chia-Wei Chien) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 碩士(Master) 畢業時期 99學年第2學期
論文名稱(中) 在P2P網路上整合延遲與頻寬監控的SVC層級排程機制 
論文名稱(英) Integrated Delay and Bandwidth Monitoring for SVC Layer Scheduling in P2P Networks
檔案
  • etd-0808111-011332.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外完全公開

    論文語文/頁數 中文/72
    統計 本論文已被瀏覽 5097 次,被下載 686 次
    摘要(中)   本論文在SVC-P2P 影音串流架構中提出了一套全新的SVC層級排程演算法(CSDB, Chunk Scheduling with Delay-trend and Bandwidth-monitoring),藉由同時使用RTT Probing與Bandwidth Monitoring機制來測量Peers之間的RTT/2與記錄歷史頻寬,在當Transmission Delay (TD)佔優勢且瞬間頻寬上升時,則根據歷史頻寬來快速的增加Video Segment (VS)的下載層級,而且在瞬間頻寬下降時會根據RTT/2與歷史頻寬做為排程依據來降低Layer Chunks (LCs)過期數目。在另一方面,當Queuing Delay (QD)與Propagation Delay (PD)佔優勢時且Peer認為根據測量到的RTT/2可以即時抓取VS,此時若沒有任何LC過期,Peer會假設測量到的RTT/2是準確的,因此會快速的提升VS的下載層級,否則Peer會假設此時的RTT/2與實際資料傳送時的One-way Delay (OWD)差距很大,因此將VS的下載層級下降至一半。當Peer認為根據測量到的RTT/2無法即時抓取VS時,此時若沒有任何LC過期,則Peer會假設RTT/2與OWD有很大的差距並且會維持相同的VS層級下載,否則Peer會假設RTT/2與OWD是接近的,因此將VS下載層級下降至一半。
      為了證明CSDB在SVC-P2P Video Streaming中的優越性,因此我們使用自己撰寫的SVC-P2P模擬器來分別模擬當TD佔優勢時或當QD與PD佔優勢時的兩種情境,模擬數據顯示我們所提出的CSDB可以讓Peer抓取的層級與LCs過期數目取得平衡,以達到即時地觀賞更高播放品質的SVC影片。
    摘要(英)   In this Thesis, we proposed a new SVC Layer Scheduling Algorithm (CSDB, Chunk Scheduling with Delay-trend and Bandwidth-monitoring) in SVC-P2P Video Streaming by using RTT Probing and Bandwidth Monitoring mechanisms to measure RTT/2 and historic bandwidth between peers simultaneously. When transmission delay (TD) dominates in the end-to-end delay and when instantaneous bandwidth increases, peer will quickly increase the downloading layers of video segment (VS). On the other hand, when instantaneous bandwidth decreases, peer will decrease the number of layer chunks (LCs) not in time according to RTT/2 and historic bandwidth. When queuing delay (QD) and propagation delay (PD) dominate in the end-to-end delay, peer will assume RTT/2 is accurate because every LC is in time. In this case, peer will quickly increase the downloading layers; otherwise, peer assumes there is a big difference between RTT/2 and one-way delay (OWD) such that it will decrease the downloading layers to half. When peer cannot grab VS in time according to measured RTT/2 but every LC grabbed is in time, peer will assume there is a big difference between measured RTT/2 and OWD. In this case, peer will keep no change in downloading layers; otherwise, peer will assume measured RTT/2 is close to OWD, and it will decrease the downloading layers to half.
      In order to demonstrate the advantages of CSDB, we designed a simulator written in C++. In the simulation, we consider two scenarios: 1) When TD dominates. 2) When QD and PD dominate. Simulation results show that peer can achieve high quality SVC video by balancing the number of received layers and the number of LCs not it time.
    關鍵字(中)
  • SVC-P2P影音串流
  • 關鍵字(英)
  • Monitoring
  • Bandwidth
  • Probing
  • RTT
  • Chunk
  • Layer
  • Segment
  • Video
  • 論文目次 第一章 導論 1
    1.1 研究動機 1
    1.2 研究方法 2
    1.3 章節介紹 4
    第二章 SVC Video Streaming in P2P 5
    2.1 Segment Chunk (SC) 5
    2.2 P2P Networks 6
    2.2.1 Tree-Based架構 6
    2.2.2 Mesh-Based架構 7
    2.3 SVC 8
    2.3.1 Video Streaming的即時性 9
    2.3.2 Layer Chunk的切割方式 10
    2.3 相關研究 11
    2.3.1 Bandwidth First與Delay First監控機制 11
    2.3.2 調整SVC影片層級 13
    2.4 本論文的機制 15
    第三章 SVC Layer Scheduling 16
    3.1 RTT Probing 16
    3.2 BM (Bandwidth Monitoring) 18
    3.3 Layer Chunk Scheduling 19
    3.3.1 CSDT 21
    3.3.2 CSBM 23
    3.3.3 CSDB 24
    第四章 模擬機制與結果分析 27
    4.1 模擬器 27
    4.1.1 RP的Modules與運作流程 27
    4.1.2 SP的Modules與運作流程 31
    4.2 模擬環境設定 33
    4.3模擬分析 37
    4.3.1 TD佔優勢時 37
    4.3.2 QD與PD佔優勢時 41
    4.4 Cost分析 43
    4.4.1 Computation Cost 44
    4.4.2 Communication Cost 47
    第五章 結論與未來工作 49
    5.1 結論 49
    5.2 未來工作 51
    參考文獻 (References) 52
    Acronyms 58
    索引 59
    參考文獻 [1] G. Wang, S. Futemma, and E. Itakura, “Multiple-Description Coding for Overlay Network Streaming,” IEEE Multimedia, vol. 14, no. 1, pp. 74-82, Jan.-Mar. 2007.
    [2] P.-C. Liu, C.-W. Yi, Y.-T. Chuang, H.-H. Lu, J.-S. Leu, and W.-K. Shih, “On the Capacity of Tree-based P2P Streaming Systems,” 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 117-122, Mar. 29 - Apr. 2, 2010.
    [3] H.-C. Hsiao and C.-P. He, “A Tree-Based Peer-to-Peer Network with Quality Guarantees,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 8, pp. 1099-1110, Aug. 2008.
    [4] B. Hudzia, M.-T. Kechadi, and A. Ottewill, “TreeP: A Tree Based P2P Network Architecture,” IEEE International Cluster Computing, pp. 1-15, Sep. 2005.
    [5] M. Yang and Y.-Y. Yang, “A Peer-to-Peer Tree Based Reliable Multicast Protocol,” IEEE Global Telecommunications Conference, pp. 1-5, Nov. 27 – Dec. 1, 2006.
    [6] X. Tan and S. Datta, “Building Multicast Trees for Multimedia Streaming in Heterogeneous P2P Networks,” Proceedings Systems Communications, pp. 141-146, Aug. 14-17, 2005.
    [7] K. Ronasi, M.-H. Firooz, M.-R. Pakravan, and A.-N. Avanaki, “A Fast Algorithm for Construction of Minimum Delay Multicast Trees in P2P networks,” International Symposium on Communications and Information Technologies, pp. 137-142, Sep. 20 - Oct. 18, 2006.
    [8] X.-J. Hei, C. Liang, J. Liang, Y. Liu, and K.-W. Ross, “A Measurement Study of a Large-Scale P2P IPTV System,” IEEE Transactions on Multimedia, vol. 9, no. 8, pp. 1672-1687, Dec. 2007.
    [9] W.-P. Ken Yiu, X. Jin, and S.-H. Gary Chan, “Distributed Storage to Support User Interactivity in Peer-to-Peer Video Streaming,” IEEE International Conference on Communications, vol. 1, pp. 55-60, Jun. 2006.
    [10] A.-P. Couto da Silva, E. Leonardi, M. Mellia, and M. Meo, “Chunk Distribution in Mesh-Based Large-Scale P2P Streaming Systems: A Fluid Apporach,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 3, pp. 451-463, Mar. 2011.
    [11] Y.-Y. Chen, J.-K. Jan, Y.-Y. Chi, and M.-L. Tsai, “A Feasible DRM Mechanish for BT-Like P2P System,” International Symposium on Information Engineering and Electronic Commerce, pp. 323-327, May 16-17, 2009.
    [12] Y. Zhu and Y. Hu, “Efficient, Proximity-aware Load Balancing for DHT-based P2P Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 4, pp. 349-361, Apr. 2005.
    [13] M.-A. Rahman, “Load Balancing in DHT based P2P Networks,” International Conference on Electrical and Computer Engineering, pp. 920-923, Dec. 20-22, 2008.
    [14] X.-Y. Zhang, J.-C. Liu, B. Li, and Y.-S.-P. Yum, “CoolStreaming/DONet: a Data-driven Overlay Network for Peer-to-Peer Live Media Streaming,” Proceedings IEEE INFOCOM 2005, vol. 3, pp. 2102-2111, Mar. 13-17, 2005.
    [15] Q. Ye and C.-J. Chen, “A Study on Topology Model and Data Contribution Strategy of PPLive,” 2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 301-304, Oct. 10-12, 2010.
    [16] C. Wu, B.-C. Li, and S.-Q. Zhao, “Diagnosing Network-Wide P2P Live Streaming Inefficiencies,” IEEE INFOCOM 2009, pp. 2731-2735, Apr. 19-25, 2009.
    [17] S. Wenger, Y.-K. Wang, and T. Schierl, “Transport and Signaling of SVC in IP Networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1164-1173, Sep. 2007.
    [18] C.-S. Park, N.-H. Kim, S.-H. Park, G.-R. Kwon, and S.-J. Ko, “Video Transmission Adopting Scalable Video Coding over Time-varying Networks,” IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 689-695, May 2006.
    [19] P. Amon, H.-Y. Li, A. Hutter, D. Renzi, and S. Battista, “Scalable Video Coding and Transcoding,” IEEE International Conference on Automation, Quality and Testing, Robotics, vol. 1, pp. 336-341, May 22-25, 2008.
    [20] Z.-Y. Liu, Y.-M. Shen, K.-W. Ross, S.-S. Panwar, and Y. Wang, “LayerP2P: Using Layered Video Chunks in P2P Live Streaming,” IEEE Transactions on Multimedia, vol. 11, no. 7, pp. 1340-1352, Nov. 2009.
    [21] Y. Wang, F. Wang, and X.-H. Liang, “A Novel Architecture to Deliver Scalable Video Coding Contents over P2P Network,” 2010 International Conference On Computer and Communication Technologies in Agriculture Engineering, vol. 1, pp. 139-142, Jun. 12-13, 2010.
    [22] H. Guo and K.-T. Lo, “Cooperative Media Data Streaming with Scalable Video Coding,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 9, pp. 1273-1281, Sep. 2008.
    [23] E. Akyol, A.-M. Tekalp, and M.-R. Civanlar, “A Flexible Multiple Description Coding Framework for Adaptive Peer-to-Peer Video Streaming,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, no. 2, pp. 231-245, Aug. 2007.
    [24] J. Sing and S. Ben, “Improving Congestion Window Growth in Large Bandwidth Delay Product Networks,” 15th IEEE International Conference on Networks, pp. 382-387, Nov. 19-21, 2007.
    [25] A. Chobanyan, M. Mutka, Z.-W. Cen, and N. Xi, “One Way Delay Trend Detection for Available Bandwidth Measurement,” IEEE Global Telecommunications Conference, vol. 2, pp. 1114-1118, Nov. 28 – Dec. 2, 2005.
    [26] T. Barzuza, S. Ben Zedeff, O. Modai, L. Vainbrand, Y. Wiener, and E. Yellin, “Trend: A Dynamic Bandwidth Estimation and Adaptation Algorithm for Real-time Video Calling,” 2010 18th International Packet Video Workshop, pp. 126-133, Dec. 13-14, 2010.
    [27] J. Bian, Z.-Q. Wang, and G.-Z. Zhang, “SSP Algorithm for Available Bandwidth Estimation,” International Conference on Communication Technology, pp. 1-4, Nov. 27-30, 2006.
    [28] J. Sivarajah, D.-W. Armitage, and N.-M. Allinson, “History-based Bottleneck Bandwidth Estimation Technique,” Electronics Letters, vol. 39, no. 3, pp. 335-336, Feb. 2003.
    [29] Q. Liu and J.-N. Hwang, “End-to-end Available Bandwidth Estimation and Time Measurement Adjustment for Multimedia QOS,” Proceedings. 2003 International Conference on Multimedia and Expo, vol. 3, pp. III - 373-6, Jul. 6-9, 2003.
    [30] S.-S. Wang, H.-F. Hsiao, and S.-Y. Lee, “Layered Congestion Control for Scalable Video Coding Based on the Efficient Bandwidth Inference,” Ninth IEEE International Symposium on Multimedia Workshops, pp. 417-420, Dec. 10-12, 2007.
    [31] D. Ciullo, M.-A. Garcia, A. Horvath, E. Leonardi, M. Mellia, D. Rossi, M. Telek, and P.Veglia, “Network Awareness of P2P Live Streaming Applications: A Measurement Study,” IEEE Transactions on Multimedia, vol. 12, no. 1, pp. 54-63, Jan. 2010.
    [32] C.-T. Lu, H.-Y. Zhang, and L.-J. Sheng, “Research and Design on Peer Selection Strategy of P2P Streaming,” 5th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-4, Sep. 24-26, 2009.
    [33] P. Chen, J.-Y. Lim, B.-S. Lee, M.-C. Kim, S.-J. Hahm, B.-S. Kim, K.-S. Lee, and K.-S. Park, “A Network-adaptive SVC Streaming Architecture,” The 9th International Conference on Advanced Communication Technology, vol. 2, pp. 955-960, Feb. 12-14, 2007.
    [34] C. Liang, Y. Guo, and Y. Liu, “Investigating the Scheduling Sensitivity of P2P Video Streaming: An Experimental Study,” IEEE Transactions on Multimedia, vol. 11, no. 3, pp. 348-360, Apr. 2009.
    [35] X.-L. Niu, S.-B. Yang, B. Wu, X.-Q. Liu, and L.-M. Guo, “A Cache Scheduling Scheme Based on Layered Coding VOD System,” Eighth International Conference on Grid and Cooperative Computing, pp. 238-243, Aug. 27-29, 2009.
    [36] A.-T. Nguyen, B.-C. Li, and F. Eliassen, “Quality- and Context-Aware Neighbor Selection for Layered Peer-to-Peer Streaming,” 2010 IEEE International Conference on Communications, pp. 1-6, May 23-27, 2010.
    [37] Y.-H. Wang, “Dynamic Layer Allocation for SVC Video Segments in P2P Streaming Networks,” 國立中山大學電機工程學系碩士論文, Jun. 2010.
    口試委員
  • 黃崇明 - 召集委員
  • 吳承崧 - 委員
  • 童曉儒 - 委員
  • 黃仁竑 - 委員
  • 許蒼嶺 - 指導教授
  • 口試日期 2011-08-02 繳交日期 2011-08-08

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫