Responsive image
博碩士論文 etd-0808114-201126 詳細資訊
Title page for etd-0808114-201126
論文名稱
Title
海綿矽質骨針含量及角質海綿吸附之研究
Study of the Biogenic Silica Contents and Its Incorporation by Keratose Sponges
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-30
繳交日期
Date of Submission
2014-09-08
關鍵字
Keywords
生物矽、海綿生物量、角質海綿、海洋沉積物、浴用海綿Spongia sp.、化學鹼提取法
bath sponge Spongia sp., marine sediment, sponge biomass, keratose sponges, biogenic silica, wet-chemical method
統計
Statistics
本論文已被瀏覽 5890 次,被下載 902
The thesis/dissertation has been browsed 5890 times, has been downloaded 902 times.
中文摘要
生物矽(Biogenic silica, BSi)是指矽藻、放射蟲、海綿等生物所產生的不定型矽,是古氣候、地質年代研究中海洋環境初級生產力的指標。過去海洋生地化矽循環所計算的生物矽含量是以矽藻為主,不含其他製造矽質骨骼的生物,如海綿、放射蟲等。然而,目前有學者提出海綿可能為地球矽循環之匯池(sink),海綿角色漸被重視。在海綿與矽循環相關的研究中,玻璃海綿類與尋常海綿類已有進展,本研究針對沉積物中的海綿骨針與網角海綿(Order: Dictyoceratida)中的浴用海綿Spongia sp.體內外源生物矽與非生物性顆粒的含量與分布進行探討;研究分為三大部份:一、台灣周圍海域與南海沉積物中海綿骨針含量研究;二、化學鹼提取法定量海綿體內生物矽含量;三、浴用海綿Spongia sp.體內外源顆粒之分布。
沉積物中骨針含量的研究部分,分析台灣海域與南中國海不同環境與深度31個樣點,發現沉積物中的生物矽僅有海綿骨針。淺海環境(0-1128 m)沉積物中骨針含量受到陸源顆粒影響較大,稀釋效應之下骨針含量偏低,樣點深度增加時,骨針含量有增加的趨勢。台灣周圍海域珊瑚礁區樣點DBS的骨針含量可高達7910 spicule n• g-1 sediment,澎湖地區的樣點SK海綿骨針含量亦相當高,可達每克沉積物中含有2293個骨針。將澎湖地區四個樣點沉積物中的海綿骨針與當地的海綿生物量進行相關分析發現,矽質骨針海綿(Tedania sp.)的生物量與沉積物中骨針相關性不高,但是有相似的趨勢,除水流以及其他未被估計的海綿可能會影響沉積物中骨針的含量外,當地大量的網角海綿亦可能吸附水中懸浮的骨針,延遲骨針進入沉積物中的時間,而使沉積物中的骨針量升高。
為瞭解海綿體內有多少外源生物矽累積,本研究測試海洋沉積物中經常使用的化學鹼提取法,以瞭解此法是否適用於海綿體內外源性生物矽含量之定量。此法包含化學鹼溶液提取海綿體內生物矽與矽鉬黃定量兩個步驟,實驗最後並比較五種不同海綿,測試海綿體內生物矽的提取效果。研究結果顯示,海綿骨針以2M KOH消化8.5-9hrs,可以提取穩定含量的生物矽而不會受到非生物性矽質顆粒的影響。矽鉬黃法測定時則不需添加抑制劑,並以50°C水浴槽進行1hr呈色可達穩定狀態,所提取得生物矽含量約為原始重量之80-90%。針對不易定量生物矽的海綿,化學鹼提取法是一個有效且方便的方法。
角質海綿體內外源顆粒含量的研究中,本研究自澎湖六個潮間帶採集浴用海綿Spongia sp.,將海綿分為外層(Outer layer)與內層(Interior layer)兩部分進行研究。發現網角海綿體內的生物矽多集中於外層,是內層的2-3倍;海綿體內的生物矽含量與季節或地點均無關係,然而非生物性顆粒的含量在水流較強的環境中高於平靜水域的含量,推測生物矽可能與海綿絲生長有關,且不受環境中外源生物矽顆粒多寡影響,僅吸附海綿所需要的定量,是海綿主動選擇吸附的顆粒。非生物性顆粒含量則可能與水流強弱有關,是屬於被動運輸進入海綿體內而滯留,並非海綿主動選擇。
淺海沉積物與浴用海綿Spongia sp.所包含的生物矽量不高,對海洋矽循環影響不大,但需考量網角海綿物種多樣性與豐度,以及網角海綿延遲骨針進入矽元素生地化循環的可能性。
Abstract
Organisms that have Biogenic silica (BSi) skeletons include diatoms, silicoflagellates, radiolarians and sponges. BSi in marine sediments is an important indicator of siliceous organism distributions and paleoproductivities, but the estimation were based on diatom frustule amounts. The sponges and radiolarians were excluded from the marine siliceous biogeochemical cycle estimation in the past. However, sponges had became a role in the cycle in recent years. The siliceous demosponges and the glass sponge reefs were suggested as a sink in local silica cycles. While the glass sponges and demosponges have been investigated, more results to support the importance of sponges in silica cycle was expected. This study will focus on the sponge spicules in sediments and the keratose sponges (Order: Dictyoceratida). There are three main parts in this study: 1. The Spatial distribution of spicules in sediments around Taiwan and the Sunda Shelf. 2. An efficient wet-chemical method to determine biogenic silica content in sponges. 3. Distribution of foreign particles in the bath sponge, Spongia sp..
Thirty-one surface sediment samples were collected in South China Sea. Only sponge spicules were found in the depth from intertidal to depths of 1128 m, and the abundance of sponge spicules correlated positively and negatively with water depth and sediment grain size when coral reef sites were excluded, respectively. The low spicule abundance in shallow waters may have resulted by current conditions and the dilution effect through riverine input of terrestrial sediment. The highest spicule amount were found in coral reef sites, especially Site DBS, where the spicule number reached 7910 spicule n• g-1 sediment and 2293 spicule n• g-1 sediment in Site SK in Penghu area. The correlation of spicule in sediments and sponge biomass indicated the sponge biomass was not significantly related to spicules in sediments in Penghu intertidals, which may be influenced by local water currents and unrecorded sponge species. However, the large amount of keratose sponges could also increase the spicule amount in sediments by preserving those particles in sediment upper layers.
To measure the BSi in sponges, the wet-chemical method was employed to understand if this method is efficient for determing the BSi amounts in sponges. The wet-chemical method, that was used to measure the BSi in marine sediments studies, included alkaline solution digestion and molybdosilicate yellow determination as two steps. In addition to the wet-chemical method tests, the BSi amounts in five sponge species were compared after the methodology was fixed. The results indicated stable digestion of sponge BSi can be obtained by 2M KOH with 8.5-9 hours digestion time. As for molybdosilicate yellow method, the suppressive regent was suggested to remove from experiment. Samples can obtain the stable yellow color in 50°C water bath for 1 hour. The obtained BSi is about 80-90% of the original particle weight. Among the five sponge species, bath sponge Spongia sp. was with the lowest BSi amounts. BSi measurements in Tedania sp. were found to have a more stable results than previous studies. This method can be applied for obtaining BSi amounts from sponges, thus the BSi amount and distributions in those sponges can be better understood.
The bath ponge Spongia sp. were collected from 6 intertidal areas in Penghu. The sponges were defined as Outer and Interior layers to understand the BSi distribution and contents. The results indicated the BSi contents were concentrated in Outer layer, which was 2-3 times as the Interior parts. The BSi contents were not related to seasons or sites. The amounts of BSi in Spongia sp. may be controlled by the sponges itself. On the other hand, the non-BSi particle contents may relate to water currents since the amounts were higher at stronger water current location. However, the non-BSi particles may be transported passively by water currents instead of engulfing by sponges actively.
The BSi amounts in shallow water sediments and bath sponges were not high enough to influence the silica cycle. However, the biodiversity and abundances of the keratose sponges should be considered in further studies, especially the preservation of foreign spicules may delay the sparticles back into the siliceous biogeochemical cycle.
目次 Table of Contents
前言 1
第一章、台灣周圍海域與南海沉積物中骨針含量研究 9
摘要 10
前言 11
材料及方法 12
結果 14
討論 15
第二章、澎湖中潮間帶海綿生物量與沉積物中骨針含量的關係 28
摘要 29
前言 30
材料與方法 30
結果與討論 31
第三章、海綿體內生物矽含量測定--化學鹼提取法 42
摘要 43
前言 44
材料及方法 45
結果與討論 48
結論 52
附錄一 63
第四章、浴用海綿Spongia sp.體內外源顆粒之分布 64
摘要 65
前言 66
材料與方法 69
結果 71
討論 73
總結 87
參考文獻 92
參考文獻 References
陳鎮東。1995年。南海環境(I)概況。中華民國行政院環境保護署 國立中山大學海洋科學研究中心。
廖瑞芬。2002年。水中矽酸鹽測定中矽鉬複合物之呈色反應動力研究。國立台灣大學海洋研究所碩士論文。
譚載泰。1995年。日本海沉積物中生物源蛋白石的萃取及其在古海洋學上的意義。國立中山大學海洋地質研究所碩士論文。
鍾逸甫。2002年。黑色軟海綿(Halichondria okadai)的生殖及生態研究。國立中山大學海洋生物研究所。
Barnes, D. K. A., Bell, J. J., 2002. Coastal sponge communities of the West Indian Ocean: taxonomic affinities, richness and diversity. African Journal of Ecology 40, 337-349.
Bavestrello, G., Calcinai, B., Boyer, M., Cerrano, C., Pansini, M., 2002. The aquiferous system of two Oceanapia species (Porifera, Demospongiae) studied by corrosion casts. Zoomorphology 121, 195-201.
Bavestrello, G., Benatti, U., Cattaneo-Vietti, R., Cerrano, C., Giovine, M., 2003. Sponge cell reactivity to various forms of silica. Microscopy Research and Technique 62(4), 327-335.
Bavestrello, G., Arillo, A., Calcinai, B., Cerrano, C., Lanza, S., Sara, M., Cattaneo-Vietti, R., Gaino, E., 1998a. Siliceous particles incorporation in Chondrosia reniformis (Porifera, Demospongiae). Italian Journal of Zoology 65(4), 343-348.
Bavestrello, G., Arillo, A., Benati, U., Cerrano, C., Cattaneovietti, R., Cortesogno, L., Gaggero, L., Giovine, M., Tonetti, M., Sara, M., 1995. Quartz dissolution by the sponge Chondrosia reniformis (Porifera, Demospongiae). Nature 378(6555), 374-376.
Bavestrello, G., Benatti, U., Calcinai, B., Cattaneo-Vietti, R., Cerrano, C., Favre, A., Giovine, M., Lanza, S., Pronzato, R., Sara, M., 1998b. Body polarity and mineral selectivity in the demosponge Chondrosia reniformis. Biological Bulletin 195(2), 120-125.
Borchiellini, C., Chombard, C., Manuel, M., Alivon, E., Vacelet, J., Boury-Esnault, N., 2004. Molecular phylogeny of Demospongiae: implications for classification and scenarios of character evolution. Mol. Phylogenet. Evol. 32, 823-837.
Cerrano, C., Calcinai, B., Di Camillo, C. G., Valisano, L., Bavestrello, G., 2007. How and why do sponges incorporate foreign material? Strategies in Porifera. In: R., C.M., Lôbo-Hajdu, G., Hajdu, E., Muricy, G. (Eds.), 7th International sponge symposium. Museu Nacional, Brazil, pp. 239-246.
Cerrano, C., Arillo, A., Bavestrello, G., Benatti, U., Calcinai, B., CattaneoVietti, R., Cortesogno, L., Gaggero, L., Giovine, M., Puce, S., Sarà, M., 1999. Organism-quartz interactions in structuring benthic communities: towards a marine bio-mineralogy? Ecology Letters 2, 1-3.
Chu, J. W. F., Maldonado, M., Yahel, G., Leys, S. P., 2011. Glass sponge reefs as a silicon sink. Mar. Ecol.-Prog. Ser. 441, 1-14.
Chung, J. S., Lee, K. J., 1999. Relationship of sand and fibre in the horny sponge, Psammocinia. In: Hooper, J.N.A. (Ed.), 5th International Sponge Symposium 1998. Memories of the Queensland Museum, Brisbane, pp. 551-557.
Dixon, I. M. T., Moore, P. G., 1997. A comparative study on the tubes and feeding behaviour of eight species of corophioid Amphipoda and their bearing on phylogenetic relationships within the Corophioidae. . Philosophical Transaction of the Royal Society of London B 352(1349), 93-112.
Duckworth, A. R., Wolff, C., 2007. Bath sponge aquaculture in Torres Strait, Australia: Effect of explant size, farming method and the environment on culture success. Aquaculture 271, 188-195.
Erpenbeck, D., Sutcliffe, P., Cook, S. D., Dietzel, A., Maldonado, M., van Soest, R. W. M., Hooper, J. N. A., Worheide, G., 2012. Horny sponges and their affairs: On the phylogenetic relationships of keratose sponges. Mol. Phylogenet. Evol. 63(3), 809-816.
FAO Fishery Information Data and Statistics Unit, 2004. Collation, Analysis and Dissemination of Global and Regional Fishery Statistics., FAO, Rome.
Gaino, E., Pronzato, R., Corriero, G., Buffa, P., 1992. Mortality of commercial sponges: Incidence in two Mediterranean areas. Bolletino di Zoologia 59(1), 79-85.
Giglioli, M. E. C., 1955. The egg masses of the Naticidae (Gastropoda). Journal of Fisheries Research Bd. Canada 12, 287-327.
Hill, M. S., Hill, A. L., 2002. Morphological Plasticity in the Tropical Sponge Anthosigmella varians: Responses to Predators and Wave Energy. Biological Bulletin 202, 86-95.
Hooper, J. N. A., Van Soest, R. W. M., 2002. Systema Porifera: a guide to the classification of SpongesKluwer Academic/ Plenum Publishers, New York.
Hooper, J. N. A., Kennedy, J. A., Van Soest, R. W. M., 2000. Annotated checklist of sponges (Porifera) of the South China Sea region. . The Raffles Bulletin of Zoology 8, 125-207.
Koehl, M. A. R., 1982. Mechanical design of spicule-reinforced connective tissue: stiffness. . Journal of Experimental Biology 98, 239-267.
Krasnow, L. D., Taghon, G. L., 1997. Rate of tube building and sediment particle size selection during tube construction by the tanaid crustacean, Leptochelia dubia. Estuaries 20, 534-546.
Longakit, M. B. A., Sotto, F. B., Kelly, M., 2005. The shallow water marine sponges (Porifera) of Cebu, Philippines. Science Diliman 17(2), 52-74.
Luccheti, G., Gaggero, L., Bavestrello, G., Cerrano, C., Cattaneo-Vietti, R., 1999. Minerogenetic activity of the marine sponge Chondrosia reniformis and local impact on sediment composition. Period. Mineral. 68(3), 223-230.
Müller, W. E. G., Belikov, S. I., Tremel, W., Perry, C. C., Gieskes, W. W. C., Boreiko, A., Schröder, H. C., 2006. Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37, 107-120.
Main, M. B., Nelson, W. G., 1988. Sedimentary characteristics of sabellariid worm reefs (Phragmatopoma lapisoda Kinberg). Estuary, Coastal and Shelf Science 26, 105-109.
Maldonado, M., Young, C. M., 1998. Limits on the bathymetric distribution of keratose sponges: a field test in deep water. Mar. Ecol.-Prog. Ser. 174, 123-139.
Maldonado, M., Giraud, K., Carmona, C., 2008. Effects of sediment on the survival of asexually produced sponge recruits. Marine Biology 154, 631-641.
Maldonado, M., Riesgo, A., Bucci, A., Rutzler, K., 2010. Revisiting silicon budgets at a tropical continental shelf: Silica standing stocks in sponges surpass those in diatoms. Limnol. Oceanogr. 55(5), 2001-2010.
Maldonado, M., Navarro, L., Grasa, A., Gonzalez, A., Vaquerizo, I., 2011. Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins. Sci Rep 1.
Manconi, R., Cadeddu, B., Ledda, F., Pronzato, R., 2013. An overview of the Mediterranean cave-dwelling horny sponges (Porifera, Demospongiae). ZooKeys 281, 1-68.
McDonald, J. I., Hooper, J. N. A., McGuinness, K. A., 2002. Environmentally influenced variability in the morphology of Clinachyrella australiensis (Carter, 1886) (Porifera: Spirophorida: Tetillidae). Marine and Freshwater Research 53, 79-84.
Meroz-Fine, E., Shefer, S., Ilan, M., 2005. Changes in morphology and physiology of an East Mediterranean sponge in different habitats. Marine Biology 147, 243-250.
Nichols, S. A., 2005. An evaluation of support for order-level monophyly and interrelationships within the class Demospongiae using partial data from the large subunit rDNA and cytochrome oxidase subunit I. Mol. Phylogenet. Evol. 34, 81-96.
Palumbi, S. R., 1984. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225, 1478-1480.
Palumbi, S. R., 1986. How body plans limit acclimation: Responses of a demosponge to wave force. Ecology 67(1), 208-214.
Ponomarenko, L. P., Kalinovsky, A. I., Afiyatullov, S. S., Pushilin, M. A., Gerasimenko, A. V., Krasokhin, V. B., Stonik, V. A., 2007. Spongian Diterpenoids from the Sponge Spongia (Heterofibria) sp. Journal of Natural Products 70(7), 1110-1113.
Pronzato, R., Manconi, R., 2008. Medirerranean commercial sponges: over 5000 years of natural history and cultural heritage. Marine Ecology 29, 146-166.
Pronzato, R., Bavestrello, G., Cerrano, C., 1998. Morpho-functional adaptations of three species of Spongia (Porifera, Demospongiae) from a Mediterranean vertial cliff. Bulletin of Marine Science 63(2), 317-328.
Rützler, K., Macintyre, I. G., 1978. Siliceous sponge spicules in coral reef sediments. Marine Biology 49, 147-159.
Randall, J. E., Hartman, W. D., 1968. Sponge-feeding fished of the West Indies. Marine Biology 1, 216-225.
Reitner, J., Wörheide, G., 2002. Non-lithistid fossil Demospongiae—origins of their palaeobiodiversity and highlights in history of preservation. In: Hooper, J., van Soest, R.W.M. (Eds.), Systema Porifera-A Guide to the Classification of Sponges, pp. 52-68.
Sara, M., Bavestrello, G., Cattaneo-Vietti, R., Cerrano, C., 1998. Endosymbiosis in sponges: Relevance for epigenesis and evolution. Symbiosis 25(1-3), 57-70.
Stevely, J. M., Sweat, D., Bert, T., Sim-Smith, C., Kelly, M., 2010. Commercial Bath Sponge (Spongia and Hippospongia) and Total Sponge Community Abundance and Biomass Estimates in the Florida Middle and Upper Keys, USA. Proceedings of the Gulf and Caribbean Fisheries Institute 62, 394-403.
Teragawa, C. K., 1982. Sediment particles in a sponge skeleton. Am. Zool. 22(4), 983-983.
Teragawa, C. K., 1985. Mechanical function and regulation of the skeletal network in Dysidae, 3rd International Sponge Conference. DC:Smithsonian Institution Press, Woods Hole, MA Washington, pp. 252-258.
Teragawa, C. K., 1986a. Sponge dermal membrane morphology: Histology of cell-mediated particle transport during skeletal growth. Journal of Morphology 190(3), 335-347.
Teragawa, C. K., 1986b. Particle transport and incorporation during skeleton formation in a keratose sponge: Dysidea etheria. Biological Bulletin 170(2), 321-334.
Uriz, M.-J., Turon, X., Becerro, M. A., Agell, G., 2003. Siliceous spicule and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions. Microscopy Research and Technique 62, 279-299.
Voultsiadou-Koukura, E., Koukouras, A., 1993. Contribution to the knowledge of keratose sponges (Dyctioceratida, Dendroceratida, Verongida: Demospongiae, Porifera) of the Aegean Sea. Mitteilungen aus dem Zoologischen Museum in Berlin 69(1), 57-72.
Voultsiadou, E., Dailianis, T., C., Antoniadou, C., Vafidis, D., Dounas, C., C., C. C., 2011. Aegean Bath Sponges: Historical Data and Current Status. Reviews in Fisheries Science 19(1), 34-51.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code