Responsive image
博碩士論文 etd-0808115-201823 詳細資訊
Title page for etd-0808115-201823
論文名稱
Title
銀鱗鯧稚魚對亞硝酸鹽急毒性和亞致死效應之形態指標及生理反應
Acute toxicity and sublethal effects of nitrite on morphometric indices and physiological responses of juvenile silver moony (Monodactylus argenteus)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
47
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-30
繳交日期
Date of Submission
2015-09-08
關鍵字
Keywords
亞硝酸鹽、銀鱗鯧、蛋白質恆定機轉、離子調控、鈉鉀幫浦
protein quality control, ionoregulation, Na⁺-K⁺-ATPase, silver moony, nitrite toxicity
統計
Statistics
本論文已被瀏覽 5707 次,被下載 242
The thesis/dissertation has been browsed 5707 times, has been downloaded 242 times.
中文摘要
銀鱗鯧(Monodactylus argenteus)屬於海洋廣鹽性硬骨魚類,在台灣是一種常見的觀賞魚類。亞硝酸鹽為水生環境中的潛在問題。現今普遍採集約式養殖法,這些方法將會造成累積亞硝酸鹽而導致毒性的風險。當銀鱗鯧面臨急毒性濃度的亞硝酸時,所誘發的分子生理反應機制之探討仍相當缺乏。本篇研究將銀鱗鯧稚魚暴露於濃度為0, 25, 50, 75, 100 and 150 mg/L NO2−N之亞硝酸鹽中進行96小時亞硝酸鹽急毒性試驗,確認半致死濃度(96 h - LC50)為54.5 (42.5-67.9) mg/L NO2−N。本篇研究再進一步利用銀鱗鯧來探討暴露在亞致死亞硝酸鹽濃度2 mM海水為期七日期間,其生長、離子調控、形質層次及分子層次等生理反應。實驗結果顯示,暴露在亞硝酸鹽濃度2 mM銀鱗鯧的肝指數有下降的趨勢而其血漿葡萄糖、血漿氯離子濃度及血漿滲透壓皆有上升的趨勢。暴露在亞硝酸鹽濃度2 mM其鰓上Na⁺-K⁺-ATPase的表現量明顯高於控制組(P < 0.05 )。在鰓、肝上的熱休克蛋白70 (Heat shock protein 70; HSP70)及熱休克蛋白90 (Heat shock protein 90; HSP90)的結果顯示,暴露在亞硝酸鹽濃度2 mM其表現量顯著上升(P < 0.05 )。銀鱗鯧在鰓、肝上的泛素蛋白(Ubiquitin-conjugated proteins)在亞硝酸曝露下並無顯著變化。根據本研究的結果發現,當銀鱗鯧暴露在亞致死的亞硝酸鹽濃度時,藉由活化Na⁺-K⁺-ATPase反應和蛋白質恆定機轉以調整其離子調節反應及蛋白質的穩定來對抗亞硝酸鹽逆境的刺激。綜合以上結果,本研究闡明亞致死濃度的亞硝酸逆境,對魚類多方面的生理影響,希望本研究的結果能提供相關的研究資料用於評估亞硝酸鹽對廣鹽性硬骨魚類之影響。
Abstract
Silver moony (Monodactylus argenteus) is a common aquarium ornamental species in Taiwan. Due to study on nitrite toxicity in silver moony is lack, an acute toxicity test was carried out by exposing the juvenile fish to 0, 25, 50, 75, 100 and 150 mg/L NO2−N for 96 h. The determined median lethal concentration (96 h - LC50) was 54.5 (42.5-67.9) mg/L NO2−N. The impacts of sublethal nitrite exposure were further investigated. After exposure to 28 mg/L (2 mM) NO2−N for 7 days, decrease of hepasomatic index and increase in plasma glucose levels, osmolality and chloride concentration were observed. Gill Na+/K+-ATPase (NKA) response elevated in silver moony when exposed to sublethal nitrite. In protein quality control (PQC) mechanism, expression of branchial and hepatic heat shock protein (HSP) 90 and 70 up-regulated in response to sublethal nitrite exposure while the levels of ubiquitin-conjugated proteins were constant. The present study showed that sublethal nitrite exposure might be a stressor to affect ionic balance and homeostasis of cellular proteins, and then activation of NKA responses and PQC mechanism was essential for ionoregulatory adjustment and protein stability. This study provided the information to clarify the potential treats of sublethal nitrite toxicity to multi-physiological regulation of seawater teleosts.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
List of Figures viii
List of Table ix
1. Introduction 1
2. Materials and methods 4
2.1. Experimental animals and environments 4
2.2. Acute toxicity of nitrite 4
2.3. Sublethal nitrite exposure 6
2.4. Calculation of condition factor (CF) and hepatosomatic index (HSI) 6
2.5. Analysis of plasma glucose, osmolality, chloride concentration and muscle water content (MWC) 7
2.6. Antibodies 7
2.7. Preparation of gill and liver homogenates 8
2.8. Immunoblotting 9
2.9. Specific activity of NKA 10
2.10. Statistical analyses 12
3. Results 12
3.1. 96 h median lethal concentration (96 h - LC50) of nitrite 12
3.2. Ionoregulatory responses to sublethal nitrite exposure 12
3.3. Stress responses to sublethal nitrite exposure 13
3.4. Impacts of sublethal nitrite exposure on morphometric indices 14
4. Discussion 15
References 20
Figures 27
Table 37
參考文獻 References
Aggergaard, S., Jensen, F.B., 2001. Cardiovascular changes and physiological response during nitrite exposure in rainbow trout. Journal of Fish Biology 59, 13-27.
Bukau, B., Weissman, J., Horwich, A., 2006. Molecular chaperones and protein quality control. Cell 125, 443-451.
Cheng, S.X.J., Aizman, O., Nairn, A.C., Greengard, P., Aperia, A., 1999. [Ca²+] i determines the effects of protein kinases A and C on activity of rat renal Na+/K+-ATPase. The Journal of Physiology 518, 37-46.
Das, P.C., Ayyappan, S., Das, B.K., Jena, J.K., 2004. Nitrite toxicity in Indian major carps: sublethal effect on selected enzymes in fingerlings of Catla catla, Labeo rohita and Cirrhinus mrigala. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 138, 3-10.
Deane, E.E., Woo, N. Y., 2007. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba. Aquatic Toxicology 82, 85-93.
Devuyst, O., Guggino, W.B., 2002." Chloride channels in the kidney: lessons learned
from knockout animals." American Journal of Physiology - Renal Physiology 283, F1176-F1191.
Doulgeraki, A., Papadopoulou-Daifoti Z., Tsakiris, S., 2002." Effects of L- phenylalanine on acetylcholinesterase and Na+/K+-ATPase activities in suckling rat frontal cortex, hippocampus and hypothalamus." Zeitschrift für Naturforschung C 57, 182-188.
Evans, D.H., Piermarini, P.M., Potts, W.T.W., 1999." Ionic transport in the fish gill epithelium." Journal of Experimental Zoology 283, 641-652.
Goldberg, A.L., 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899.
Guo, R., Lee, M.A., Ki, J.S., 2013. Different transcriptional responses of heat shock protein 70/90 in the marine diatom Ditylum brightwellii exposed to metal compounds and endocrine-disrupting chemicals. Chemosphere 92, 535-543.
Harris, R., Coley, S., 1991. The effects of nitrite on chloride regulation in the crayfish Pacifastacus leniusculus Dana (Crustacea: Decapoda). Journal of Comparative Physiology B 161, 199-206.
Heijden, A.J.H.V.D., Verbost, P., Eygensteyn, J., Li, J., Bonga, S., Flik, G., 1997. Mitochondria-rich cells in gills of tilapia (Oreochromis mossambicus) adapted to fresh water or sea water: quantification by confocal laser scanning microscopy. The Journal of Experimental Biology 200, 55-64.
Hung, C.C., 2013. Study on the acute toxicity and tolerance of nitrite to juvenile silver moony (Monodactylus argenteus) M. S. thesis, Graduate Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan.
Iwama, G.K., Vijayan, M.M., Forsyth, R.B., Ackerman, P.A., 1999. Heat shock proteins and physiological stress in fish. American Zoologist. 39, 901-909.
Iwama, G.K., Afonso, L.O.B., Vijayan, M.M., 2006. Stress in fish. In: Evans, D.H., Claiborne, J.B., (eds.) The Physiology of Fishes, 3rd edn. CRC Press, Boca Raton, pp 319-342.
Jensen, F.B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 135, 9-24.
Jensen, F.B., Hansen, M.N., 2011. Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish. Aquatic Toxicology 101,318-325.
Kroupova, H., Machova, J., Svobodova, Z., 2005. Nitrite influence on fish: a review. Veterinarni Medicina 50, 461-471.
Kültz, D., 2005. Molecular and evolutionary basis of the cellular stress response. Annual. Review of Physiology 67, 225-257.
Lefevre, S., Jensen, F.B., Huong, D.T., Wang, T., Phuong, N.T., Bayley, M., 2011. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus. Aquatic Toxicology 104, 86-93.
Lefevre, S., Jensen, F.B., Huong, D.T., Wang, T., Phuong, N.T., Bayley, M., 2012. Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata. Aquatic Toxicology 118, 48-53.
Martinez, C.B., Souza, M.M., 2002. Acute effects of nitrite on ion regulation in two neotropical fish species. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 133, 151-160.
McClellan, A.J., Tam, S., Kaganovich, D., Frydman, J., 2005. Protein quality control: chaperones culling corrupt conformations. Nature Cell Biology 7, 736-741.
OECD, 1992. Test No. 203. Fish, Acute Toxicity Test. OECD Guidelines for the Testing of Chemicals. Section 2. OECD Publishing, Paris.
Park, I.S., Lee, J., Hur, J.W., Song, Y.C., Na, H.C., Noh, C.H., 2007. Acute toxicity and sublethal effects of nitrite on selected hematological parameters and tissues in darkbanded rockfish, Sebastes inermis. Journal of the World Aquaculture Society 38, 188-199.
Philips, S., Laanbroek, H.J., Verstraete, W., 2002. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Reviews in Environmental Science and Biotechnology 1, 115-141.
Place, S.P., Zippay, M.L., Hofmann, G.E., 2004. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 287, R429-R436.
Rodrigues, R.V., Schwarz, M.H., Delbos, B.C., Sampaio, L.A., 2007. Acute toxicity and sublethal effects of ammonia and nitrite for juvenile cobia Rachycentron canadum. Aquaculture. 271, 553-557.
Roques, J.A.C., Schram, E., Spanings, T., Schaik, T. van, Abbink, W., Boerrigter, J., Vries, P. de., Vis, H. van de., Flik, G., 2015. The impact of elevated water nitrite concentration on physiology, growth and feed intake of African catfish Clarias gariepinus (Burchell 1822). Aquaculture Research 46, 1384-1395.
Sampaio, L. A., Bianchini, A., 2002. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus. Journal of Experimental Marine Biology and Ecology 269, 187-196.
Sardella, B.A., Brauner, C.J., 2008. The effect of elevated salinity on ‘California’ Mozambique tilapia (Oreochromis mossambicus × O. urolepis hornorum) metabolism. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 148, 430-436.
Sprague, J.B., 1971. Measurement of pollutant toxicity to fish— III: Sublethal effects and “safe” concentrations. Water Research 5, 245-266.
Sun, S., Ge, X., Zhu, J., Xuan, F., Jiang, X., 2014. Identification and mRNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 159, 69-77.
Tang, C.H., Lee, T.H., 2013a. Early response of protein quality control in gills is associated with survival of hypertonic shock in Mozambique tilapia. PLOS ONE 8, e63112.
Tang, C.H., Lee, T.H., 2013b. Freshwater acclimation induces stress responses and expression of branchial Na+/K+-ATPase and proliferating cell nuclear antigen in Takifugu niphobles. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 319, 409-421.
Tang, C.H., Leu, M.Y., Yang, W.K., Tsai, S.C., 2014. Exploration of the mechanisms of protein quality control and osmoregulation in gills of Chromis viridis in response to reduced salinity. Fish Physiology and Biochemistry 40, 1533-1546.
Tang, C.H., Leu, M.Y., Shao, K., Hwang, L.Y., Chang, W.B., 2014. Short-term effects of thermal stress on the responses of branchial protein quality control and osmoregulation in a reef-associated fish, Chromis viridis. Zoological Studies 53, 21.
Todgham, A.E., Hoaglund, E.A., Hofmann, G.E., 2007. Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo. Journal of Comparative Physiology B 177, 857-866.
Wickner, S., Maurizi, M.R., Gottesman, S., 1999. Posttranslational quality control: folding, refolding, and degrading proteins. Science 286, 1888-1893.
Woo, N.Y.S., Chiu, S.F., 1997. Metabolic and osmoregulatory responses of the sea bass Lates calcarifer to nitrite exposure. Environmental Toxicology and Water Quality 12, 257-264.
Wuertz, S., Schulze, S.G.E., Eberhardt,U., Schulz,C.,Schroeder,J.P., 2013. Acute and chronic nitrite toxicity in juvenile pike-perch (Sander lucioperca) and its compensation by chloride. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 157, 352-360.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code