博碩士論文 etd-0809107-170340 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 李致瑩(Zhi-Ying Lee) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 碩士(Master) 畢業時期 95學年第2學期
論文名稱(中) 應用判別函式結合單類別支援向量機於多類別分類
論文名稱(英) Applying Discriminant Functions with One-Class SVMs for Multi-Class Classification
檔案
  • etd-0809107-170340.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外均不公開

    論文語文/頁數 中文/74
    統計 本論文已被瀏覽 5065 次,被下載 0 次
    摘要(中) 在多類別分類的問題中,AdaBoost.M1演算法扮演了相當成功的角色,並在準確度方面有著不錯的提升效果。然而,此演算法假定所有基礎分類器於準確度方面都必須大於1/2,這在多類別分類的問題中是難以達到的。因此,我們提出一個新的演算法- AdaBoost.MK,它只要求在多類別分類問題中,每個分類器的正確率需比隨機亂猜的機率(1/k)還要高即可。
    早期支援向量機在處理多類別資料分類問題時,都將它分解成數個兩類別的問題再加以解決,如此一來將需要花費大量的時間以及空間計算。為了減少時間與空間上的花費,我們提出了一個結合數個單類別支援向量機(one-class svm)以及判別函式(discriminant function)的方法來解決多類別資料分類的問題。
    在本論文中,我們利用整合數個單類別支援向量機以及判別函式的方法並與AdaBoost.MK做結合來解決多類別資料分類的問題。實驗中,我們將使用來自UCI 和Statlog的真實資料,並與許多多類別分類的演算法做比較,包括利用支援向量群聚(support vector clustering)的方法與AdaBoost.M1結合單類別支援向量機的方法。
    摘要(英) AdaBoost.M1 has been successfully applied to improve the accuracy of a learning algorithm for multi-class classification problems. However, it assumes that the performance of each base classifier must be better than 1/2, and this may be hard to achieve in practice for a multi-class problem. A new algorithm called AdaBoost.MK only requiring base classifiers better than a random guessing (1/k) is thus designed.
    Early SVM-based multi-class classification algorithms work by splitting the original problem into a set of two-class sub-problems. The time and space required by these algorithms are very demanding. In order to have low time and space complexities, we develop a base classifier that integrates one-class SVMs with discriminant functions.
    In this study, a hybrid method that integrates AdaBoost.MK and one-class SVMs with improved discriminant functions as the base classifiers is proposed to solve a multi-class classification problem. Experimental results on data sets from UCI and Statlog show that the proposed approach outperforms many popular multi-class algorithms including support vector clustering and AdaBoost.M1 with one-class SVMs as the base classifiers.
    關鍵字(中)
  • 支援向量群聚
  • 判別函式
  • 單類別支援向量機
  • 多類別資料分類
  • 關鍵字(英)
  • AdaBoost.M1
  • multi-class classification
  • One-class SVM
  • Discriminant function
  • Support vector clustering
  • 論文目次 摘要 i
    Abstract ii
    第一章 簡介 1
    第二章 文獻探討 6
    2.1 核心函式 6
    2.2單類別支援向量機 10
    2.3支援向量群聚 15
    2.4支援向量機應用於多類別分類 18
    第三章 研究方法 - KOCSVM & Adaboost.MK 22
    3.1研究動機 22
    3.2研究方法 - KOCSVM 27
    3.2.1方法流程 27
    3.2.2判別函式 31
    3.3 Boosting演算法 34
    3.3.1 Adaboost.M1演算法 35
    3.3.2 Adaboost.MK演算法 38
    第四章 實驗結果與分析 43
    4.1資料集介紹 43
    4.2實驗一 KOCSVM與KSVDD的比較 44
    4.3實驗二 加入Adaboost.M1演算法前後之比較 48
    4.4實驗三 Adaboost.MK與Adaboost.M1的比較 51
    第五章 結論與未來研究方向 54
    5.1 結論 54
    5.2 未來研究方向 55
    參考文獻 56
    附錄一 支援向量機簡介 59
    附錄二 序列最小優化簡介 61
    附錄三 兩類別的Adaboost演算法 63
    參考文獻 [1] K. Goh, E.Y. Chang, and B. Li, “Using One-class and Two-Class
    Svms for Multiclass Image Annotation”, IEEE Transaction on
    Knowledge and. Data Engineering, Vol. 17, No. 10, pp. 1333-1346,
    2005.
    [2] C.W. Hsu and C.J. Lin, “A comparison of methods for multi-class
    support vector machines”, IEEE Transactions on Neural Networks,
    Vol. 13, pp. 415-425, 2002.
    [3] R. Rifin and A. Klautau, “In Defense of One-Vs-All Classification”,
    Journal of Machine Learning Research, Vol. 5, pp. 101-141, 2004.
    [4] Y. Freund and R. Schapire, “A decision-theoretic generalization of
    on-line learning and an application to boosting”, Journal of
    Computer and System Sciences, Vol. 55, No. 1, pp. 119-139, 1997.
    [5] A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. “Support
    Vector Clustering”, Journal of Machine Learning Research, Vol. 2,
    pp. 125-137, 2001.
    [6] B.Y. Sun and D.S Huang, “Support vector clustering for multi-class
    classification problems”, The Congress on Evolutionary
    Computation, Canberra, Australia, pp.1480-1485, 2003.
    [7] L. Manevitz and M. Yousef. “One-Class Svms for Document
    Classification”, Journal of Machine Learning Research, Vol. 2, pp.
    139-154, 2002.
    [8] B. Schölkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C.
    Williamson, “Estimating the Support of a High-Dimensional
    Distribution”, Neural Computation, Vol. 13, No. 7, pp. 1443-1472,
    2001.
    [9] Y. Freund and R. Schapire, “A decision-theoretic generalization of
    on-line learning and an application to boosting”, Journal of
    Computer and System Sciences, Vol. 55, No. 1, pp. 119-139, 1997.
    [10] J. Shawe-Taylor and N. Cristianini, “Kernel Methods for Pattern
    Analysis”, Cambridge,UK:Cambridge University Press,2004.
    [11] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, “An
    introduction to kernel-based learning algorithms”, IEEE
    Transactions on Neural networks, Vol. 12, No. 2, pp. 181-201,
    March 2001.
    [12] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. D. Jackel,
    Y. LeCun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik,
    “Comparison of classifier methods: a case study in handwritten digit
    recognition”, In International Conference on Pattern Recognition,
    pp. 77-87, 1994.
    [13] J. Friedman, “Another Approach to Polychotomous Classification”,
    Technical Report, Department of Statistics, Stanford University,
    Stanford, CA. 1996.
    [14] U. Kreßel, “Pairwise classification and support vector machines, In
    B. Scholkopf, B.J. Burges, and A.J. Smola, editors, Advances in
    Kernel Methods - Support Vector Learning”, pp. 255-268,
    Cambridge, MA, MIT Press, 1999.
    [15] J.C. Platt, N. Cristianini, and J. Shawe-Taylor, “Large margin DAGs
    for multiclass classification”, In Advances in Neural Information
    Processing System, Vol. 12, pp. 547-553, MIT Press, 2000.
    [16] A. Sachs, C. Thiel and F. Schwenker, “One-Class Support-Vector
    Machines for the Classification of Bioacoustic Time Series”,
    International Journal on Artificial Intelligence and Machine
    Learning, Vol. 6, No. 4, pp. 29-34, 2006.
    [17] R. Schapire, “Using output codes to boost multiclass learning
    problems”, In Proc. of the 14th International Conference on
    Machine Learning, 1997.
    [18] R. Schapire and Y. Singer, “Improved boosting algorithms using
    confidence-rated prediction”, Machine Learning, Vol. 37, No. 1, pp.
    297-336, 1999.
    [19] L. Li, “Multiclass boosting with repartitioning”, In Proc. 23rd
    International Conference on Machine Learning, 2006.
    [20] G. Eibl, K.-P. Pfeiffer, “Multiclass Boosting for Weak Classifiers”,
    Journal of Machine Learning Research, Vol. 6, No. Feb, pp.
    189-210, 2005.
    [21] J. Zhu, S. Rosset, H. Zhou, and T. Hastie, “Multiclass adaboost”,
    Technical Report #430, Department of Statistics, University of
    Michigan, 2005.
    [22] C.C.Chang and C.J.Lin. LIBSVM: A Library for Support Vector
    Machines. April 1, 2007.
    [23] J.C.Platt, “Fast Training of Support Vector Machines using
    Sequential Minimal Optimization”, Advances in Kernel Methods
    -Support Vector Learning, pp. 185-208 , 1999.
    [24] J.C.Platt, “Sequential Minimal Optimization: A Fast Algorithm for
    Training Support Vector Machines”, Technical Report
    MSR-TR-98-14, Microsoft Research, 1998.
    口試委員
  • 謝朝和 - 召集委員
  • 吳志宏 - 委員
  • 歐陽振森 - 委員
  • 潘欣泰 - 委員
  • 李錫智 - 指導教授
  • 口試日期 2007-07-26 繳交日期 2007-08-09

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫