Responsive image
博碩士論文 etd-0809115-152036 詳細資訊
Title page for etd-0809115-152036
論文名稱
Title
a-面氧化鋅薄膜之熱氧化:光與電性的各向差異
Thermal Oxidation of a-oriented ZnO Thin Films:Exploring the Anisotropy of Optical and Electrical Properties
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-09-10
關鍵字
Keywords
射頻濺鍍、氧化鋅、光致螢光、a-面、非極化面
Photoluminescence, Sputtering, a-oriented, Non-polar, ZnO
統計
Statistics
本論文已被瀏覽 5716 次,被下載 296
The thesis/dissertation has been browsed 5716 times, has been downloaded 296 times.
中文摘要
本研究使用射頻濺鍍法(rf-sputtering)成長非極化a-面氧化鋅薄膜在r-面的氧化鋁基板上,並在800℃及1大氣壓的氧氣環境下進行1、9和25小時的熱退火處理,進而分析電與光性經由退火後的變化。透過已得到的成長參數,使用濺鍍系統成長我們所需的a-面氧化鋅薄膜,首先使用X光繞射儀 (X-ray Diffractometer, XRD)包含2theta-omega、phi scan、rocking curve和GIXRD確認a-面氧化鋅薄膜之晶體取向。熱退火處理後,再使用2theta-omega峰值訊號的強度來推斷磊晶薄膜的品質,進一步量測a-面氧化鋅分別沿著m-軸與c-軸擺動的rocking curve,從擬合所得的半高寬(Full Width at Half Maximum, FWHM)可以更清楚了解因為FWHM較窄,得知與沿c-軸成長的樣品相比,薄膜沿著m-軸成長時取向較為規則,並透過phi scan得到a-面氧鋅與r-面的氧化鋁基板的磊晶關係:[1 1 2 ̅ 0]_(Al2O3 )∥[1 0 1 ̅ 0]_ZnO及[1 ̅ 0 1 1]_(Al2O3 )∥[0 0 0 1]_ZnO。我們使用物理性質量測系統量測電阻對溫度的關係與霍爾效應。由電導率對溫度關係曲線圖經過熱活化能公式擬合來分析雜質能階,結果顯示在低溫區為淺層能階主導,高溫區則由較深層的能階所主導。氧化鋅薄膜經退火處理後電導率變小,且隨著退火時間的增長電導率下降。未退火的a-面氧化鋅遷移率(mobility)隨溫度升高而增加,代表載子散射主要由缺陷或雜質造成。室溫光致螢光(Photoluminescence, PL)光譜的量測發現隨著退火的時間增長,黃綠光區的訊號也越高,由高斯曲線擬合出來的數多峰值推論,在退火的過程中氧氣對氧化鋅薄膜的光性有很重要的影響,而透過峰強度對時間的函數關係,與由PL光譜判斷各種缺陷之消長的相互關聯,對如氧擴散速率等因素導致的變化,在此工作中亦略作申論。
Abstract
Non-polar a-ZnO thin films were epitaxially grown on r-plane Al2O3 substrates by RF-sputtering, and the effects of thermal annealing in oxygen on the electrical and optical properties were investigated. The crystallographic qualities and orientations of a-ZnO thin films were analyzed by X-ray Diffractometer (XRD) through 2theta-omega, phi-scan, rocking curve and Grazing Incidence X-ray Diffraction (GIXRD) measurements. The samples were furnace-annealed for 1, 9 and 25 hours. The quality of the crystallographic alignments was judged by the 2theta-omega scans and rocking curves measured along the m-axis and c-axis of the films. The epitaxial relations between the thin films and substrates as determined by the phi-scans of an off-axis plane, i.e., the (1 0 1 ̅ 0)- or m-plane, for the a-oriented samples, to be [1 1 2 ̅ 0]_(Al2O3 )∥[1 0 1 ̅ 0]_ZnO及[1 ̅ 0 1 1]_(Al2O3 )∥[0 0 0 1]_ZnO. A Physical Property Measurement System (PPMS) by Quantum Design was used to measure the electrical resistivity as a function of temperature, from which the energy levels of various doping impurities are inferred. Similarly, from temperature-dependent Hall measurement, the carrier mobility tends to increase with increasing temperature, suggesting the dominance of impurity or defect scattering mechanism. At low temperatures, the shallow gap-states dominate, while in the high-temperature regions, the deeper states dominate the electric conduction and the electrical conductivity largely decreases with increasing annealing time. The yellow-green luminescence of the PL signals intensified with increasing annealing time, believed to arise from multiple-step transitions that led to the optical emission. Oxygen diffusion and the roles of various defects in relation to the change of optical properties are discussed.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
第二章 基本理論及儀器介紹 4
2.1 濺鍍系統與原理 4
2.1.1 電漿(Plasma) 4
2.1.2 濺鍍系統 6
2.2 X光繞射儀 (X-ray Diffractometer, XRD) 9
2.2.1 基本介紹 9
2.2.2 Bede D1 儀器介紹: 11
2.3 電性量測 15
2.3.1 接觸電阻 15
2.2.2 電阻率對溫度的關係 20
2.3.3 霍爾量測 (Hall Measurement) 21
2.4 光致螢光光譜 (Photoluminescence, PL) 25
第三章 實驗設計與流程 27
第四章 實驗結果與分析 29
4.1 X-ray量測分析 29
4.1.1 2theta-omega 29
4.1.2 Phi Scan 31
4.1.3 Rocking Curve 34
4.1.4 GIXRD 36
4.2 電性分析 37
4.2.1 歐姆接觸 37
4.2.2 電阻率對溫度的關係 39
4.2.3 霍爾量測分析 44
4.3 光性分析 47
第五章 結論 56
參考文獻 57
參考文獻 References
[1] U. Ozgur, D. Hofstetter, and H. Morkoc, "ZnO Devices and Applications: A Review of Current Status and Future Prospects," Proceedings of the IEEE, vol. 98, pp. 1255-1268, 2010.
[2] U. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
[3] S. Strite and H. Morkoç, "GaN, AlN, and InN: A review," Science Technology, vol. 10, pp. 1237-1266, 1992.
[4] W. Shan, B. D. Little, A. J. Fischer, J. J. Song, B. Goldenberg, W. G. Perry, et al., "Binding energy for the intrinsic excitons in wurtzite GaN," Physical Review B, vol. 54, pp. 16369-16372, 1996.
[5] T. Hanada, "Basic Properties of ZnO, GaN, and Related Materials," in Oxide and Nitride Semiconductors. vol. 12, T. Yao and S.-K. Hong, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 1-19.
[6] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, et al., "Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect," Physical Review Letters, vol. 53, pp. 2173-2176, 1984.
[7] T. Makino, Y. Segawa, M. Kawasaki, and H. Koinuma, "Optical properties of excitons in ZnO-based quantum well heterostructures," Semiconductor Science and Technology, vol. 20, p. 78, 2005.
[8] Z. Chen, K. Shum, T. Salagaj, W. Zhang, and K. Strobl, "ZnO thin films synthesized by chemical vapor deposition," Energy, vol. 8, p. 8.9, 2010.
[9] T. Tommi and K. Maarit, "Atomic layer deposition of ZnO: a review," Semiconductor Science and Technology, vol. 29, p. 043001, 2014.
[10] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, vol. 38, pp. 265-271, 2005.
[11] J. Zhao, L. Hu, Z. Wang, Z. Wang, H. Zhang, Y. Zhao, et al., "Epitaxial growth of ZnO thin films on Si substrates by PLD technique," Journal of Crystal Growth, vol. 280, pp. 455-461, 2005.
[12] S. K. Han, S. K. Hong, J. W. Lee, J. Y. Lee, J. H. Song, Y. S. Nam, et al., "Structural and optical properties of non-polar A-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy," in Journal of Crystal Growth vol. 309, ed, 2007, pp. 121-127.
[13] J.-S. Tian, M.-H. Liang, Y.-T. Ho, Y.-A. Liu, and L. Chang, "Growth of a-plane ZnO thin films on LaAlO3 (100) substrate by metal-organic chemical vapor deposition," Journal of Crystal Growth, vol. 310, pp. 777-782, 2008.
[14] H. Seok-Kyu, O. Dong-Cheol, S. Jung-Hoon, I. Katsuhiko, Y. Takafumi, and H. Soon-Ku, "Lattice Deformation in a -Plane ZnO Films Grown on r-Plane Al2O3 Substrates Grown by Plasma-Assisted Molecular-Beam Epitaxy," Applied Physics Express, vol. 5, p. 081101, 2012.
[15] 柯瀚翔, "Structural and optical properties of nonpolar a-ZnO grown by RF-sputtering," 國立中山大學碩士論文, 2014.
[16] Do Kyu Lee, Sung Kim, Min Choul Kim, Sung Hwan Eom, Hyoung Taek Oh, and S.-H. Choi, "Annealing Effect on the Electrical and the Optical Characteristics of Undoped ZnO Thin Films Grown on Si Substrates by RF Magnetron Sputtering," Korean Physical Society, vol. 51, p. 1378~1382, 2007.
[17] 鄭宜芬, "Study of Magneto-transport and Hall Effect of P-type ZnO Film," 國立中山大學碩士論文, 2013.
[18] 沈志昇, "Electrical Measurement of m-Plane Zinc Oxide Thin Films Grown by Atomic Layer Deposition," 國立中山大學碩士論文, 2013.
[19] D. K. Schroder, "Semiconductor Material and Device Characterization," John Wiley & Sons, Inc., p. 800, 2006.
[20] C. K. TEL, "Introduction to Solid State Physics," ed: John Wiley & Sons, New York, 1976.
[21] 施敏, "Semiconductor Devices Physics and Technology 3rd Edition," 國立交通大學出版社, 2013.
[22] S. K. Pandey, S. K. Pandey, U. P. Deshpande, V. Awasthi, A. Kumar, M. Gupta, et al., "Effect of oxygen partial pressure on the behavior of dual ion beam sputtered ZnO thin films," Semiconductor Science and Technology, vol. 28, p. 085014, 2013.
[23] S. Y. Kim, H. W. Jang, J. K. Kim, C. M. Jeon, W. I. Park, G.-C. Yi, et al., "Low-resistance Ti/Al ohmic contact on undoped ZnO," Journal of electronic materials, vol. 31, pp. 868-871, 2002.
[24] Y. Ryu, T. Lee, J. Leem, and H. White, "Fabrication of homostructural ZnO pn junctions and ohmic contacts to arsenic-doped p-type ZnO," Applied physics letters, vol. 83, p. 4032, 2003.
[25] T. H. Lee, "The Design of CMOS Radio-Frequency Integrated Circuits 2nd Edition," Applied Physics Letters, vol. 88, pp. 032106-3, 2006.
[26] H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, "Annealing effect on the property of ultraviolet and green emissions of ZnO thin films," Journal of Applied Physics, vol. 95, pp. 1246-1250, 2004.
[27] C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, "A comparative analysis of deep level emission in ZnO layers deposited by various methods," Journal of Applied Physics, vol. 105, p. 13502, 2009.
[28] B. Lin, Z. Fu, and Y. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, p. 943, 2001.
[29] A. Djurišić, Y. Leung, K. Tam, Y. Hsu, L. Ding, W. Ge, et al., "Defect emissions in ZnO nanostructures," Nanotechnology, vol. 18, p. 095702, 2007.
[30] B. Liu, R. Zhang, Z. Xie, J. Kong, J. Yao, Q. Liu, et al., "Anisotropic crystallographic properties, strain, and their effects on band structure of m-plane GaN on LiAlO2 (100)," Applied Physics Letters, vol. 92, pp. 261906-261906, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code