Responsive image
博碩士論文 etd-0809115-152117 詳細資訊
Title page for etd-0809115-152117
論文名稱
Title
利用調變氧化原子層沉積m面氧化鋅磊晶薄膜
Modulated-oxidation ALD of m-ZnO epitaxial thin films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-09-10
關鍵字
Keywords
調變、水、非極化面、氧化鋅、原子層沉積
ZnO, ALD, Nonpolar, H2O, Modulated
統計
Statistics
本論文已被瀏覽 5664 次,被下載 94
The thesis/dissertation has been browsed 5664 times, has been downloaded 94 times.
中文摘要
此研究主要利用原子層沉積(ALD)系統,改變氧化鋅薄膜成長周期中水的注入次數。此研究成長於m面藍寶石基板(m-Al2O3)的氧化鋅薄膜為纖鋅礦結構的[10 ̅10]方向,即m面氧化鋅。利用高解析度透射電子顯微鏡和電子繞射圖可以發現,調變水後氧化鋅的晶格沿著a軸有±2º的旋轉。由於氧化鋅的纖鋅礦結構有各向異性,其光學和電性量測分別沿著m面氧化鋅的a軸和c軸量測,比較他們沿著不同軸向光性及電性的不同。量測樣品隨著溫度變化的電阻率,所有樣品階為簡併半導體趨勢,在高溫區為金屬性質,到了低溫區則顯現出半導體性質。利用Dual-Energy Arrhenius擬合,得到薄膜之活化能,得到薄膜得雜質能階。由PL光譜的結果,可得到參雜水後樣品之缺陷變化,並與RT曲線進行分析比較,發現這兩個組測量值之間沒有明確的相關性,由光致螢光發光峰推斷可能不相關的。對不同成長參數之樣品進行不同軸向的霍爾量測,遷移率及載子濃度會隨著增加注入水的次數而降低。
Abstract
This research studies the zinc oxide thin films by using atomic layer deposition (ALD) under periodically modulated exposures to an extra sequence of water. Water was used as an oxidizing precursor in the layer by layer deposition of zinc and oxygen atoms. The samples took Wurtzite structure and grew epitaxially in the [101 ̅0] direction, i.e., the m-axis, on the also m-oriented -Al2O3 (sapphire) substrates. Atomic imaging using high-resolution transmission electron microscopy and electron diffraction indicates some ±2º rotation of the water-modulated films around the a-axis. The anisotropy of optical and electrical properties of the samples in relation to the water modulation was investigated by comparing their behaviors along the a-axis and c-axis of the m-ZnO. As judged by the decreasing resistivity as a function of temperature in the RT curves, all samples demonstrated degenerate semiconductor behaviors at high temperatures, but they then went through a transition and became semiconductor-like as temperature decreases. Through a dual-energy Arrhenius fitting strategy of the RT curves, some relevant doping-impurity energy levels governing the electric conduction were deduced. Various possible impurity states were also inferred from the photoluminescence (PL) spectroscopy and compared with what was measured and analyzed with the RT curves. The lack of clear correlations between the two set of measurements suggests that those gap-states which are responsible for the optical transition as inferred from the luminescence peaks may not be related to the active carrier contributors, mostly because of being too deep in the gap to be effectively thermally activated for band conduction. The anisotropic behaviors were also studied with the Hall Effect to obtain the carrier concentration and mobility and their temperature dependence and by the dependence of electric polarizations of the incident laser source on the photoluminescence.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1. 前言 1
1-2. 氧化鋅特性 2
1-2-1. 基本結構 2
1-2-2. 氧化鋅的極性面與非極性面 3
1-3. 研究動機及文獻回顧 5
第二章 實驗儀器及理論基礎 7
2-1. 原子層沉積(Atomic Layer Deposition)系統及原理 7
2-2. X光繞射儀(X-ray diffraction,XRD) 9
2-2-1. X-ray原理 9
2-2-2. X光繞射儀模式 11
2-3. 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 15
2-4. 電性量測 17
2-4-1. 傳輸線模型(Transmission Line Method,TLM) 17
2-4-2. 物理性質量測系統(PPMS) 18
2-4-3. 霍爾量測 18
2-5. 光制螢光(Photoluminescence, PL) 22
第三章 實驗設計 23
3-1. 樣品置備 23
3-1-1. 基板清洗 23
3-1-2. 成長樣品 23
3-1-3. 成長參數 24
3-2. 樣品量測 25
第四章 實驗結果與討論 26
4-1. XRD結構分析 26
4-1-1. 2theta-omega scan(2
參考文獻 References
[1] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
[2] D. Calestani, F. Pattini, F. Bissoli, E. Gilioli, M. Villani, and A. Zappettini, "Solution-free and catalyst-free synthesis of ZnO-based nanostructured TCOs by PED and vapor phase growth techniques," Nanotechnology, vol. 23, p. 194008, 2012.
[3] Y. Liu, Y. Li, and H. Zeng, "ZnO-Based Transparent Conductive Thin Films: Doping, Performance, and Processing," Journal of Nanomaterials, vol. 2013, p. 9, 2013.
[4] B. H. Choi, H. B. Im, J. S. Song, and K. H. Yoon, "Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering," Thin Solid Films, vol. 193–194, Part 2, pp. 712-720, 1990.
[5] R. Mundle and A. K. Pradhan, "Electrical response in atomic layer deposited Al:ZnO with varying stack thickness," Journal of Applied Physics, vol. 115, p. 183503, 2014.
[6] T. Minami, "New n-Type Transparent Conducting Oxides," MRS Bulletin, vol. 25, pp. 38-44, 2000.
[7] T. Nam, C. W. Lee, H. J. Kim, and H. Kim, "Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition," Applied Surface Science, vol. 295, pp. 260-265, 2014.
[8] G. Luka, L. Wachnicki, B. S. Witkowski, T. A. Krajewski, R. Jakiela, E. Guziewicz, et al., "The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition," Materials Science and Engineering: B, vol. 176, pp. 237-241, 2/25/ 2011.
[9] Y. Zhang, M. Liu, W. Ren, and Z.-G. Ye, "Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition," Applied Surface Science, vol. 340, pp. 120-125, 2015.
[10] Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, et al., "Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing," Journal of Crystal Growth, vol. 259, pp. 335-342, 12// 2003.
[11] E. Biegger, M. Fonin, U. Rüdiger, N. Janßen, M. Beyer, T. Thomay, et al., "Defect induced low temperature ferromagnetism in Zn1−xCoxO films," Journal of Applied Physics, vol. 101, p. 073904, 2007.
[12] T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, and M. Kawasaki, "An oxide-diluted magnetic semiconductor: Mn-doped ZnO," Applied Physics Letters, vol. 75, pp. 3366-3368, 1999.
[13] K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, "Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant," Applied Physics Letters, vol. 83, pp. 63-65, 2003.
[14] M.-L. Tu, Y.-K. Su, and C.-Y. Ma, "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 100, p. 053705, 2006.
[15] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, et al., "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat Mater, vol. 4, pp. 42-46, 01//print 2005.
[16] T. Hanada, "Basic Properties of ZnO, GaN, and Related Materials," in Oxide and Nitride Semiconductors. vol. 12, T. Yao and S.-K. Hong, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 1-19.
[17] J. I. Sohn, W.-K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, et al., "Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity," Scientific Reports, vol. 4, p. 5680, 07/14/online 2014.
[18] J. Piprek, Y. Chiu, and J. E. Bowers, "Multi-quantum-well electroabsorption modulators," in Physics and Simulation of Optoelectronic Devices X, 2002, pp. 609-617.
[19] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, et al., "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865-868, 08/24/print 2000.
[20] S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, T. Venkatesan, et al., "Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire," Applied Physics Letters, vol. 75, pp. 3947-3949, 1999.
[21] H. Matsui and H. Tabata, "Correlation of self-organized surface nanostructures and anisotropic electron transport in nonpolar ZnO (10−10) homoepitaxy," Journal of Applied Physics, vol. 99, p. 124307, 2006.
[22] J. W. Elam and S. M. George, "Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques," Chemistry of Materials, vol. 15, pp. 1020-1028, 2003.
[23] M. Birkholz, P. F. Fewster, and C. Genzel, Thin Film Analysis by X-Ray Scattering: Wiley, 2006.
[24] J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics. New York: Wiley, 2001.
[25] M. Birkholz, "Grazing Incidence Configurations," in Thin Film Analysis by X-Ray Scattering, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 143-182.
[26] M. Yasaka, "X-ray Thin Film Measurement Techniques," Rigaku Journal, vol. 26, pp. 1-9, 2010.
[27] L. Reimer and H. Kohl, Transmission Electron Microscopy: Physics of Image Formation vol. 36: Springer Science & Business Media, 2008.
[28] E. Ramsden, Hall-Effect Sensors: Theory and Application: Newnes, 2011.
[29] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2006.
[30] S. Yang, B. H. Lin, C. C. Kuo, H. C. Hsu, W. R. Liu, M. O. Eriksson, et al., "Improvement of crystalline and photoluminescence of atomic layer deposited m-plane ZnO epitaxial films by annealing treatment," Crystal Growth & Design, vol. 12, pp. 4745-4751, 2012.
[31] C.-S. Ku, H.-Y. Lee, J.-M. Huang, and C.-M. Lin, "Epitaxial Growth of m-Plane ZnO Thin Films on (101̅0) Sapphire Substrate by Atomic Layer Deposition with Interrupted Flow," Crystal Growth & Design, vol. 10, pp. 1460-1463, 2010/04/07 2010.
[32] J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong, J. Y. Lee, S. I. Hong, et al., "Interface and defect structures in ZnO films on m-plane sapphire substrates," Journal of Crystal Growth, vol. 312, pp. 238-244, 1/1/ 2010.
[33] B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, "Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition," Materials Science and Engineering: B, vol. 71, pp. 301-305, 2000.
[34] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, "Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach," Applied Physics Letters, vol. 78, pp. 407-409, 2001.
[35] D. Das and P. Mondal, "Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering," RSC Advances, vol. 4, pp. 35735-35743, 2014.
[36] O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, "Metal-like conductivity in transparent Al:ZnO films," Applied Physics Letters, vol. 90, p. 252108, 2007.
[37] V. Bhosle, A. Tiwari, and J. Narayan, "Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO," Applied Physics Letters, vol. 88, p. 032106, 2006.
[38] S. Sze and K. N. Kwok, "Physics of semiconductor devices 3rd Edition," ed: Wiley Online Library, 2007.
[39] Y. S. Kim and Y. S. Won, "Investigation on Reaction Pathways for ZnO Formation from Diethylzinc and Water during Chemical Vapor Deposition," Bull. Korean Chem. Soc, vol. 30, p. 1573, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code